
A N D E R S B J O R H O L M D A H L

V E D R A N A A N D E R S E N D A H L

N O T E F O R
I M A G E A N A LY S I S

2 anders bjorholm dahl vedrana andersen dahl

April 25, 2018

Contents

1 Image representations 7

2 Feature-based image analysis 15

3 Image analysis with geometric priors 23

4 Neural networks 41

5 Free exercise 53

6 Bibliography 69

Introduction

This lecture note is a collection of topics for the students taking the
course 02506 Advanced Image Analysis at Technical University of Den-
mark. The note provides background material for the course together
with practical guidelines and advice for carrying out tasks in image
analysis. The topics are selected to represent problems that you typi-
cally meet as an engineer with speciality in image analysis.

Image analysis is a rapidly growing field of research with a wealth
of methods constantly being developed and published. It is not the
intention to give a complete overview of the field with this note. In-
stead, we focus on general principles for image analysis with the aim
of giving students the skill-set needed for exploring new methods.
General principals relate to identifying relevant image analysis prob-
lems, finding suitable methods for quantification, implementing image
analysis algorithms and verifying their performance. This requires pro-
gramming skills and the ability to translate a mathematical description
to an efficient functioning program.

Image analysis methods published in scientific articles can be chal-
lenging to implement in a computer program, since they are described
using mathematical notation, which my vary between articles. In some
cases the notation can be very different from the code that needs to
be written in order to implement the method. One aim with this note
is to guide the implementation of image analysis algorithms from de-
scriptions in articles to the functioning programs. This is done through
examples, practical tips, and advice on designing useful test to ensure
that the obtained implementation gives the expected output.

There are several papers and book chapters that describe the meth-
ods to be implemented during the course. These are integral parts
of the course pensum, and should be read when working with the
examples in this note.

The structure of the note is as follows. First comes a general in-
troduction to a few central aspects relevant for image analysis along
with the first introductory exercise, which has the purpose of refreshing
basic image analysis concepts. The main text includes three compulsory
exercises. Towards the end of a note we provide a number of examples

6 anders bjorholm dahl vedrana andersen dahl

for the final exercise.
During the course you may be implementing methods and algo-

rithms that are already integrated in existing software libraries. These
commercial or public implementations might be better than what you
can achieve given the time available for the exercises. The reason to
redo what other people have already done is to gain insight and un-
derstanding of how image analysis methods work, and give you the
skill-set to implement or modify advanced methods where there might
not be an available implementation. It can however be a good idea to
use existing implementations for evaluating your implementation.

1 Image representations

We refer to images as regularly sampled signals in 2D or 3D space that
typically represent a measurement, e.g. a measure of light intensity. In
image analysis, we use the image to obtain some information about the
signal we have measured in the form of a quantaty. There are important
aspects to consider when working with images regarding what they
represent and how they were created, that we will discuss here.

We start with the mathematical notation of images. One way of
representing an image using mathematical notation is as a function
I(x, y) with I : Ω ⊂ R2 → R, which means that each coordinate (x, y)
in the image domain Ω a scalar value I(x, y) is assigned. Typically
the image is sampled at integer values, e.g. running from 1, such that
x ∈ {1, ..., X} and y ∈ {1, ..., Y}. There can be some variation between
scientific articles on the notation of an image, e.g. that it is implicitly
assumed that the image lives in 2D space, and the notation would
simply be a symbol like I.

A 3D image is typically termed a volume, but again we can model
it as a function I : Ω ⊂ R3 → R. Volumetric images are often recon-
structed from projection data obtained using a scanner, e.g. a CT or an
MRI scanner. Again the image is represented as a function that maps
to a scalar value, but here from a 3D coordinate (x, y, z). In a volumet-
ric image, the three spatial dimensions encode intensity information
similar to a 2D image. This means that if we apply operators on a
volumetric image, we would use a 3D operator, e.g. an averaging filter
in three dimensions. In some cases the sampling is anisotropic, which
is typically seen in e.g. medical CT images, and this can influence the
applied analysis methods.

Spectral images have multiple measures in each pixel (sometimes
represented as a vector) that encode the recorded spectral bands. A
common example are the RGB images where I : Ω ⊂ R2 → R3 encodes
the red, green, and blue bands. If more spectral bands are recorded, we
are typically talking about multispectral or hyper-spectral images where
I : Ω ⊂ R2 → Rn normally with n > 3. For 2D spectral images we
would often apply operators in the spectral bands independently. Using
the smoothing example from before, but now in a RGB image, would

8 anders bjorholm dahl vedrana andersen dahl

be a 2D smoothing in the R-band, G-band, and B-band respectively.
Another common image-related representation is a movie. A movie

is a set of consecutive images also called frames sampled over time,
which we can model as I(x, y, t) where I : Ω ⊂ R3 → R for a grey
scale movie or I : Ω ⊂ R3 → R3 for an RGB movie. You can also
have a multispectral movie (I : Ω ⊂ R3 → Rn with I(x, y, t)) or a
volumetric movie (I : Ω ⊂ R4 → R with I(x, y, z, t)). For movies we
would typically expect small changes between frames, and this can be
utilised in the analysis.

1.1 Exercise 1

This exercise is aimed at refreshing or introducing concepts from basic
image analysis curriculum and other related subjects, and contains
some topics that will be useful at a later stage in the course. It is not
expected that you will be able to carry out all exercises, so you can
choose the ones you find most interesting.

Based on the outcome of this exercise, we will assess the general
competence levels of the students, so that we can plan course based on
this. Therefore, it is important that you hand in what you have finished
by the end of the exercise.

Hand in You should hand in one page pdf telling which parts of the
exercise you managed to finish, and showing one illustration from
each of the finished exercise. Text should be limited to a short figure
caption, title, labels, legends etc. Please also hand in a MATLAB script
or a Jupyter notebook with code for one of the exercises.

1.1.1 Measuring image smoothness

Figure 1.1: Slice of a CT image of glass
fibres viewed orthogonal to the fibre di-
rection.

Figure 1.2: Two zoomed in images from
image shown in Figure 1.1.

In many image analysis applications, such as image denoising and
image segmentation, we are interested in producing a result which has
a quality that we loosely call smoothness. A smoothness measurement
commonly used is the total variation defined for an image I as

V(I) = ∑
x∼x′
|I(x)− I(x′)| ,

where x ∼ x′ indicates two neighbouring pixel locations. Implement a
function which computes the total variation of a 2D grayscale image and
test it on an image shown in Figure 1.1 and Figure 1.2. Use Gaussian
smoothing to remove some of the noise from the image, and confirm
that the smoothed image has a smaller total variation.

Data In this exercise you should use the volume slice fibres_xcth.png
that you can find on Campusnet.

note for image analysis 9

1.1.2 Computing boundary length

Figure 1.3: Image of a segmented fuel
cell with three phases. Black represents
air, grey is cathode, and white is anode.

In case of segmentation, we are often interested in quantifying the
length of the segmentation boundary. If the segmentation is represented
by an image S : Ω→ {1, 2, . . . n}, where n is the number of segments,
we may define the length of the segmentation boundary as

L(S) = ∑
x∼x′

d(S(x), S(x′)) ,

where x ∼ x′ again indicates two neighbouring pixel locations d is a
discrete metric

d(a, b) =

{
0 if a = b
1 otherwise

which in this case operates on pixel intensities. In other words, L(S)
counts the occurrences of two neighbouring pixels having different
labels.

Implement a function which computes the length of a segmentation
boundary and test it on provided segmentation images of a fuel cell,
where one is shown in Figure 1.3. You function will be useful when we
will be working with Markov random fields later in the course.

Data In this exercise you should use the volume slice fuel_cell_1.tif,
fuel_cell_2.tif, and fuel_cell_3.tif that you can find on Campus-
net.

1.1.3 Curve smoothing

Figure 1.4: Top image shows the dinosaur
curve in green, while red shows the curve
with added noise. Bottom image shows
two smoothing results with different α
and β weights.

A segmentation boundary may be explicitly represented using a se-
quence of points connected by line segments, which typically delineates
an object in the image. Assume that 2-times-N matrix X contains x and
y coordinates of N points which define a closed curve, a so-called snake
1. To impose smoothness to this representation, we will need to smooth

1 Michael Kass, Andrew Witkin, and
Demetri Terzopoulos. Snakes: Active con-
tour models. International Journal of Com-
puter Vision, 1(4):321–331, 1988

the snake. This can be achieved in a simple way by displacing every
snake point towards the average of its two neighbours, possibly itera-
tively. Point displacement can be seen as a result of filtering the snake

with kernel λ
[

1 −2 1
]
, where λ is a parameter controling the

magnitude of the displacement. For efficiency, we want to implement
the snake-smoothing step as

Xnew = (I + λL)X (1.1)

where L is a N-times-N matrix with elements 1, -2, and 1 in every row
such that -2 is on the main diagonal, and 1 on its left and right (also
circularly in the first and the last row), and zeros elswhere. Confirm
that λ = 0.5 displaces every snake point exactly to the average of its

10 anders bjorholm dahl vedrana andersen dahl

neighbours. Try smoothing one of the provided contours, also shown
in Figure 1.4. We have included both original and noisy curves.

Maybe you noticed two important limitations of our simple approach.
First, for larger values of λ the curve will start oscillating, but using a
small λ requires many iterations of the smoothing step for a noticeable
result. Second, smoothing leads to the shrinkage of the curve.

Stability issues can be avoided by evaluating the displacement on
the new snake Xnew. In other words, we can use an implicit (backwards
Euler) approach. Instead of Equation 1.1 where Xnew = X + λLX we
use Xnew = X + λLXnew leading to

Xnew = (I− λL)−1X .

We can now choose an arbitrary large λ and obtain the desired smooth-
ing in just one step. The price to pay is matrix inversion, but for many
applications, this needs to be computed only once.

Shrinkage is caused by the kernel which minimizes curve length.
Instead, we can use a kernel which minimizes the curvature, or even
better, we can weight the elasticity (length minimizing) and rigidity
(curvature minimizing) term. The kernel with the two contributions is

α
[

0 1 −2 1 0
]
+ β

[
−1 4 −6 4 −1

]
as derived in 2, section 3.2.4, with α and β weighting the two terms. 2 Chenyang Xu, Dzung L Pham, and

Jerry L Prince. Image segmentation using
deformable models. Handbook of medical
imaging, 2:129–174, 2000a

Implement the two improvements to the snake smoothing: the ex-
tended kernel and the implicit approach. Note that your final implemen-
tation instead of λL uses a matrix that combines the two contributions.
Note also that this matrix is a (sparse) circulant matrix. Test your
improved smoothing. Snake smoothing will be useful when we will be
working with deformable models later in the course.

Data In this exercise you should use the curves given as text files
containing point coordinates dino.txt, dino_noisy.txt, hand.txt, and
hand_noisy.txt, that you can find on Campusnet.

1.1.4 Unwrapping image

Figure 1.5: Image of a dental implant that
should be unwrapped.

Figure 1.6: Unwrapped image of a dental
implant.

A solution to image analysis problem may involve geometric transfor-
mations. When working with spherical or tubular objects, we some-
times want to represent an image in polar coordinate system. Imple-
ment a function which performs such image unwrapping using a desired
angular and radial resolution. Use your function to unwrap one of
the slices from the dental dataset, an example is shown in Figure 1.5
and 1.6. Unwrapping will be useful when we will be working with
deformable models later in the course.

note for image analysis 11

Data In this exercise you should use one of the central slices from the
dental folder that you can find on Campusnet.

1.1.5 Working with volumetric image

Figure 1.7: A longitudinal slice (an xz-
plane) of the volumetric image of a dental
implant.

Figure 1.8: 3D rendering of the thresh-
olded volumetric image of a dental im-
plant.

To give you a taste of working with 3D images, we have prepared a
small dataset containing slices from an X-ray CT scan. By convention
in X-ray imaging, dense structures (having a hight X-ray attenuation)
are shown bright compared to less dense structures. Furthermore, the
direction given by image slices is most often denoted z. The volume you
are given contains a metal (very bright) object. Show orthogonal cross
sections of the object, see Figure 1.7. Can you determine an optimal
threshold for segmenting the object from the background?

Optionally, show a volumetric 3D rendering of the thresholded object
using any available software. An example is shown in Figure 1.8. If
you are using MATLAB, check a function isosurface.

Data In this exercise you should use the volumetric image stored
as individual slices in the folder called dental that you can find on
Campusnet.

1.1.6 PCA of multi-spectral image

Figure 1.9: False colour image obtained
from an 18 band VideometerLab image.

Principal component analysis (PCA) is a linear transform of multivari-
ate data that maps data points to an orthogonal basis according to
maximum variance. A basic introduction in PCA is given in 3, and here

3 Lindsay I Smith. A tutorial on principal
components analysis. Technical report,
2002

we will apply it on a multispectral image.
We provided an image acquired with the VideometerLab, which is a

multispectral imaging device, that uses coloured LED’s to illuminate
a material, in this case samples in a petri dish. This gives an 18
channel image I : Ω ⊂ R2 → R18 where each channel corresponds to a
wavelength, and channels cover the range from 410 to 955 nm, i.e. the
visible and near-infrared spectrum. The image depicts vegetables on a
dish and is shown in false colours in Figure 1.9.

The aim of this exercise is to carry out PCA and visualise the prin-
cipal components as images. PCA can be done by eigenvalue decom-
position of a data covariance matrix. In our analysis we view each
pixel as an observation, so we rearrange I into a N-by-18 data matrix X.
Each row of X represents one pixel (observation), with the successive
columns corresponding to wavelengths (variables).

Data covariance matrix C is defined as

C[i, j] =
1

N − 1

N

∑
n=1

(X[n, i]− µ[i])(X[n, j]− µ[j]), (1.2)

12 anders bjorholm dahl vedrana andersen dahl

where i, j ∈ {1, ..., 18}, and µ is a 18 dimensional empirical mean vector
computed for each variable.

Covariance matrix C can be computed as a matrix product

C =
1

N − 1
XTX , (1.3)

where X = X − 1n×1µT is a zero-mean matrix obtained by indepen-
dently centering each row of X around its mean value. Convince
yourself that is correct.

Principal components are given by the eigenvectors of C, e.i. vec-
tors such that Cvi = λivi. Eigenvector corresponding to the largest
eigenvalue gives the direction of the largest variance in data, the eigen-
vector corresponding to the second largest eigenvalue is the direction
of the largest variance orthogonal to the first principal direction, etc.
The projections of the data points onto principal directions X̂vi can be
rearranged back into image grid, and viewed as images.

If V is a matrix containing eigenvectors in it columns, all principal
components can be computed as

Q = XV. (1.4)

Data In this exercise you should use the images in the file called
mixed_green.zip which contains a folder of png-images. You find the
file on Campusnet.

Tasks The following steps takes you through computing the principal
components.

1. Write a script to read in the images and display them. Convince
yourself that there is a difference between the spectral bands. What
is the datatype of the images?

2. Rearrange the image into a matrix X as described above with one
pixel in each row. Compute the column-wise mean µ and subtract
this from X to get the zero mean X.

3. Compute the covariance matrix C.

4. Compute the eigenvectors V and eigenvalues λ.

5. Compute the principal component loadings Q.

6. Rearrange Q into images and display the result.

You can compare your implementation to an already implemented PCA
function in e.g. MATLAB or Python.

note for image analysis 13

1.1.7 Bacterial growth from movie frames

Image data with a temporal component can be stored in the form of a
movie. The purpose of this exercise is to read in image frames from a
movie and analyse them. The movie contains microscopic images of
listeria bacteria growing in a petri dish acquired at equal time steps.
An example frame is shown in Figure 1.10. Your task is to make a small
program that visualise bacterial growth by counting the cells.

The image quality is however not very good due to the low resolution
and compression artefacts, making it difficult to separate the individual
bacteria. So, we make a rough assumption that the number of pixels
covered by bacteria is proportional to the number of bacteria. The task
is therefore to make a plot of the number of pixels covered by bacteria
as a function of time.

Figure 1.10: Example of microscopic im-
age of listeria bacteria in a petri dish.

Data In this exercise you should use the movie listeria_movie.mp4

that you can find on Campusnet.

Tasks A suggested approach is to first read in one representative
frame from the movie and build an cell segmentation method. A
simple threshold is not sufficient, but with a few processing steps the
cells become distinguishable from the background. You can try the
following steps:

1. Convert the image I to a grey scale image G.

2. Compute the gradient magnitude M =
√
(∂G/∂x)2 + (∂G/∂y)2 us-

ing an appropriate filter.

3. Smooth M using a Gaussian filter.

4. If the parameters have been chosen appropriately, the pixels covering
bacteria can now be segmented by thresholding.

When you have made a functioning segmentation model, you can
apply this to all images in the movie using the following steps for each
image in the movie:

1. Apply the segmentation and sum the bacteria pixels.

2. Store this number in an array.

3. Plot the number of pixels as a function of time.

The obtained curve has a characteristic shape. Can you recognize the
function that could describe this shape?

2 Feature-based image analysis

Analyzing images using feature-based representations is central to
many applications. Here we will work with scale-space for detecting
image features independently of scale. Based on ideas from scale-
space theory, a large number of texture-based image features have been
suggested, where scale-invariant feature transform (SIFT) was one of
the pioneering ones, and we will work with that in the second part of
the exercise for feature-based analysis in week three of the course.

2.1 Scale-space

Methods from scale-space allow scale invariant detection of image
structures. This means that we can find features like blobs (binary
large objects), corners, ridges, edges, and other structures at different
scale. When we talk about image features like corners and edges, it
is not corners or edges of the physical depicted objects, but corners
and edges in the image intensities. To visualize this, you can think
of a 2D image as a landscape, with pixel intensities corresponding to
hight measurements at regularly placed positions. In this landscape,
an edge is a line where hight abruptly changes. A corner will be a
height-change point where two (more or less) orthogonal edges meet,
and other types of features can be described in the same way.

Using a feature-based image representation is convenient because
we break up the image into manageable parts that are more descriptive
than the individual pixels. Scale invariance, which means that we for
example can identify the same feature shown at different scale in two
images, is also very convenient. In e.g. computer vision where images
of the same object are often captured from difference distance, it is typi-
cally a desired property to be able to measure the features independent
of its scale. But it also allows us to measure image structures that are
different in size for example from microscope images, as we will be
working with here.

Here we will base our work on the article of Lindeberg1 that gives an 1 Tony Lindeberg. Scale-space: A frame-
work for handling image structures at
multiple scales. 1996

introduction to scale-space theory. Scale-space representation has made
the basis for a range of image analysis methods and is extensively used

16 anders bjorholm dahl vedrana andersen dahl

in computer vision. In the exercise you will implement scale-space blob
detection and use it for detecting and measuring the size of fibres that
are imaged using X-ray CT.

The idea of scale-space is to represent image features at all scales
at once and detect features based on criteria that is independent of
the scale. Here we will be working with the Gaussian scale-space,
and the analysis is in practice done by smoothing the image using a
Gaussian filter. In Lindeberg2 the scale-space representation is defined 2 Tony Lindeberg. Scale-space: A frame-

work for handling image structures at
multiple scales. 1996

for a general N-dimensional signal f : RN → R. Here we will work
with a 2D image I : R2 → R. For 2D image, its Gaussian scale-space
representation is L : R2 ×R+ → R, which in practice becomes a 3D
object, with the two spatial image dimensions (x, y) and the scale in the
third dimension. Since scale is obtained by smoothing with a Gaussian,
the variable determining the degree of smoothing is the variance t. Also
the standard deviation σ =

√
t is used in the article, but here we have

simplified the notation and use only the variance t.
The Gaussian scale-space L is defined for N-dimensional signals by

L(x; t) =
∫

ξ∈RN
f (x− ξ)g(ξ; t)dξ (2.1)

with g : RN ×R+ → R being the N-dimensional Gaussian kernel

g(x; t) =
1

(2πt)N/2 e−(x2
1+···+x2

N)/(2t). (2.2)

In practice we will work with the Gaussian scale-space for 2D images
on a discrete set of pixels. Therefore, we can write the Gaussian scale-
space (ignoring boundary issues) as

L(x, y; t) =
γ

∑
−γ

δ

∑
−δ

I(x− γ, y− δ)g(δ, γ; t) (2.3)

where g : R2 ×R+ → R is the 2D Gaussian kernel

g(x, y; t) =
1

2πt
e−(x2+y2)/(2t). (2.4)

Computing the scale-space is done at a discrete set of steps where for
scale t = 0 we have L(x, y; 0) = I(x, y).

For feature detection, we need to compute the derivatives of a scale-
space representation. Note that this is conveniently achieved by con-
volving an image with a kernel that is a derivative of a Gaussian.
Blob detection uses second order derivatives, more precisely Laplacian
∇2L = Lxx + Lyy which gives a high response where there is a blob in
the image. To detect blobs we need to find local maxima and minima
of the Laplacian.

What we still need to do is to ensure that we can detect blobs across
different scales. The image in scale-space representation is increasingly

note for image analysis 17

smoothed, and with increasing scale t, pixels will change their intensity
value towards the average value of the image. Therefore, the absolute
values of derivatives will become smaller when increasing t. For blob
detection, this means that the magnitude of the local maxima and
minima in the scale-space of the Laplacian ∇2L will decrease and
this smoothing must be compensated. The compensation factors for
different features are given in Lindeberg3 and for the blob feature it is t 3 Tony Lindeberg. Scale-space: A frame-

work for handling image structures at
multiple scales. 1996

such that the scale normalized Laplacian of Gaussian is t∇2L.

2.2 Exercise 2 – part I

This exercise is aimed at feature based image analysis, and will cover
tree topics: scale-space analysis4, scale-invariant feature transform 4 Tony Lindeberg. Scale-space: A frame-

work for handling image structures at
multiple scales. 1996

(SIFT)5 for image matching, and texture analysis for image segmenta-

5 David G Lowe. Distinctive image fea-
tures from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):
91–110, 2004

tion. This exercise will run over three weeks, and the tasks carried out
one in week will be used the next week. So, it is important that you
carry out the exercise in the order, that it is presented.

Hand in After three weeks you should hand in a report. The report
should have a technical character, and briefly illustrate the main results
obtained in the exercise. Text should be limited to short explanations,
and can e.g. be headlines and figure captions. Please also hand in a
MATLAB script or a Jupyter notebook with code for one of the exercises
in separate .m or .py files. This code should be able to reproduce your
results in the report.

Figure 2.1: Example of fibre image ac-
quired using an optical microscope.

2.2.1 Scale-space blob detection

In this part of the exercise you will implement scale-space blob detection
with the purpose of detecting and measuring glass fibres from images
of a glass fibre composite. An image example is given in Figure 2.1,
that shows a polished surface of a glass fibre composite sample, where
individual fibres can be seen. Since these fibres are relatively circular we
will model them as circles. This means that we must find their position
(center coordinate) and diameter, and for this we will use the scale-
space blob detection. After having computed the fibres parameters, we
will carry a statistical analysis of the results.

2.2.2 Computing Gaussian and its second order derivative

We will approach this analysis in steps that lead to the final algorithm.
First we will use synthetic data to develop and test our algorithm, and
after that we will carry out the analysis on the real images. Since we
focus on blob detection, we must have a Gaussian kernel and its second

18 anders bjorholm dahl vedrana andersen dahl

order derivative. Since the Gaussian is separable, we can employ 1D
filters for our analysis. The 1D Gaussian is given by

g(x) =
1√
2πt

e
−x2

2t . (2.5)

Tasks

1. Derive (analytically) the second order derivative of the Gaussian

d2g
dx2 .

2. Implement a function that takes the variance t as input and outputs
a filter kernel of g and d2g/dx2. You should use a filter kernel of at
least 3t. Why?

3. Try the function on the synthetic test image test_blob_uniform.png.

2.2.3 Detecting blobs on one scale

Blobs can be found as spatial maxima (dark blobs) or minima (bright
blobs) of the scale-space Laplacian

∇2L = Lxx + Lyy . (2.6)

Tasks

1. Compute the Laplacian at one scale using the synthetic test image
test_blob_uniform.png.

2. Build a function that detects the coordinates of maxima and minima
in the Laplacian image (detect blobs).

3. Plot the center coordinates and circles outlining the detected blobs.
The radius of the circles should be

√
2t.

4. Try varying t such that the blobs in test_blob_uniform.png are
exactly outlined.

2.2.4 Detecting blobs on multiple scales

To find blobs at multiple scales, we must use the scale-space representa-
tion. This can conveniently be done by representing ∇2L as a 3D array
(volumetric image).

note for image analysis 19

Tasks

1. Decide on scales at which the Laplacian must be computed. You
could make it equal steps in the size of the blobs (

√
2t).

2. Compute the scale normalized scale-space Laplacian t∇2L for the
test image test_blob_uniform.png.

3. Find coordinates and scales of maxima and minima in this scale-
space and plot the detected blobs on top of the image. What are the
detected scales?

4. Detect blobs in the test image test_blob_varying.png.

Figure 2.2: Visualization the 3D fibers
scanned with the high resolution X-ray
CT-scanner.

2.2.5 Detecting blobs in real data

We will now continue with the real images of fibers. The fibre data is ob-
tained using different scanning methods including scanning electron mi-
croscopy (SEM.png), optical microscopy (Optical.png), synchrotron X-
ray CT (CT_synchrotron.png), and three resolutions of laboratory X-ray
CT (CT_lab_high_res.png, CT_lab_med_res.png, CT_lab_low_res.png).
The CT data is a single slice very close to the top, so we assume the data
to be from the same part of the sample, and this allows us to directly
compare the fibers. We will do this comparison in next exercise, but in
this we will compute the fiber location and their diameter. In Figure 2.2
you can see a visualization of the fibre data from the high resolution
X-ray CT scan.

We start by testing the blob-detection on this real data.

Tasks

1. Run your blob-detection function from above on a cut-out example
one of the images. It is important that you tune your parameters to
get the best possible results.

2.2.6 Localize blobs

It is difficult to detect blobs in the scale-space Laplacian, such that all
fibers are found. To overcome this, we will detect the fibers as maxima
in a Gaussian smoothed image. Since the fibers are almost the same
size, we can use a single scale of the Gaussian to detect the fiber centers.

Tasks

1. Smooth an image of fibers with a Gaussian and visualize the result.

2. Find locations of maxima in this image and plot the positions on top
of the original image.

20 anders bjorholm dahl vedrana andersen dahl

3. Compute the scale-space Laplacian for the image.

4. Find the scale of each fibre as the minimum over scales at the fiber
locations.

5. Plot circles according to the found scale on top of the original image.

6. Detect fibers in all six fiber images. Save the locations and diameters.

In the next exercise, where you will work with image matching based
on SIFT features, you will use the results obtained in this exercise. So,
next time it will be possible to continue working on the parts that you
did not finish here.

2.3 Exercise 2 – part II

Will be included in this note.

2.4 Exercise 2 – part III

You have now extracted blob-features in the images using scale-space
blob detection and then used SIFT features to find correspondence
between images. This allows us to match the blob-features between the
images. In this exercise you should combine the results of the first two
parts of the exercise and obtain a matching of the blobs, that allows
a comparison of how well the blob-detection measures the size of the
fibers.

The homography H obtained from the matching SIFT features gives
correspondence between points in two images x′i = Hxi. This allows us
to transform the center coordinates of the blobs detected in one image
to the coordinates in the other image. To compute this in a robust
manner, you tried a symmetric matching, where the requirement is that
a matched point in one image to the other, should also match from the
other to the one. You also tried to use a criterion for the uniqueness
of the match by using the ratio between the best and the second best
match. Combining the two criteria gives a good match, and you should
use that in this exercise.

Modeling the fibers using scale-space blob detection is done using
the center coordinate and the diameter. The homography H gives
the relation between the fiber’s center coordinate in the two images,
but it does not model the scale between the images. H models an
affine transformation between the images so the scale is not directly
obtainable from H, since it typically will be vary over the image. We
will ignore this variation and compute one scale factor s that relates the
diameters of fibers in one image to the diameters in the other image.

note for image analysis 21

We will compute the scale parameter using principal component
analysis (PCA). Recall that PCA can be obtained through the eigen-
decomposition of the covariance matrix C given by Cvi = λvi. The
largest eigenvalue λ1 is the direction of largest variance in the data.
If we compute this in each of the two images for the points matched
using SIFT features we obtain the variance of these point sets as λa,1

and λb,1 respectively, where a and b refers to the two images. The scale
can be obtained from this as s =

√
λb,1/λa,1. The square root is needed,

since the scale factor is proportional to the standard deviation and not
the variance.

Tasks The following steps takes you through computing the scale
factor s.

1. Obtain the corresponding coordinate sets Xa and Xb by matching
SIFT features between images.

2. Compute the eigenvalues λa,1 and λb,1 for Xa and Xb respectively.

3. Compute the scale factor s =
√

λb,1/λa,1.

Now you have all the parts necessary to compare fibers detected in
two images. We have measured the size of fibers in each image, we
can compute the correspondence between points in the two images,
and we have the scale relation between the images. This allows us to
directly compare the position and diameter for each fiber and perform
quantitative statistics. We will however not do an extensive statistical
analysis now, but just make a visualization of fibers computed in two
images but displayed in one.

Tasks You should now apply the transformation of the detected fibers
in one image to display it in the other image.

1. Detect fibers in two images with their coordinates Pa and Pb and
their diameters da and db.

2. Compute the point transformation P′a = HPa.

3. Compute the scale change in diameters d′a = sda.

4. Plot Pb and P′a in image b with diameters db and d′a respectively.

If you obtain this visualization for one pair of images it is fine, but
if you have time, you can try for more pairs and investigate which
parameters gives you the best results.

3 Image analysis with geometric priors

In the context of image analysis, the term prior knowledge refers to all
the information about problem that is available in addition to the image
data. There are numerous ways of incorporating priors when solving
image analysis problems, and here we look into Markov random fields
which are used to model local contextual information, and deformable
models useful for handling a distinctive geometry.

3.1 Markov random fields

Markov random fields (MRF) is a probabilistic framework that can be
used for modeling while taking contextual information into consid-
eration. MRF are very general and have many applications in image
analysis. MRF are characterized by the Markov property, i.e. that the
probability of a label is only dependent on the local neighborhood.

In Exercise 2 (part I and part III) will use the MRF model for image
segmentation. A segmentation can be solved by assigning a discrete
label to each pixel in the image according to the pixel intensity. Of-
ten, we would like the segmentation to be smooth, meaning that the
probability of a pixel label being different from label of neighboring is
low. Provided an image, we aim at finding a label configuration that
maximizes the a posterior (MAP) probability which is a combination of
a likelihood (data) term and the term modelling a smoothness prior.

One characteristics of MRF is that the probability of the MRF config-
uration is an exponential of the negative configuration energy. Maxi-
mizing the posterior probability is therefore equivalent to minimizing
the posterior energy of the configuration f given by

E(f) = U(f |d) = U(d| f) + U(f) (3.1)

or, in terms of clique potentials

E(f) = ∑
{i}∈C1

V1(fi) + ∑
{i,i′}∈C2

V2(fi, fi′)

where C1 is the set of one-cliques, V1 is a one-clique potential used for
modeling the likelihood term, C2 is the set of two-cliques, and V2 is a
two-clique potential used for modeling the prior term.

24 anders bjorholm dahl vedrana andersen dahl

As discussed in the book by Li1, Chapter 1, Introduction, first para- 1 Stan Z Li. Markov random field model-
ing in image analysis. Springer Science &
Business Media, 2009

graph, the main concerns of the MRF framework are how to define an
objective function, i.e. clique potentials (modelling part), and how to
find the optimal solution for a given objective function (optimization
part).

3.1.1 Example: Gender determination

We start with the extremely small example with the aim of introducing
terminology, demonstrating the modelling possibilities provided by
MRF, and demonstrate the use of the data term and likelihood. A
student comfortable with these MRF concepts may skip the example
and proceed with the exercises.

Imagine entering a bar and observing 6 persons standing along the
counter. You estimate persons heights (in cm) and record this data as

d =
[

179 174 182 162 175 165
]

.

You want to estimate the persons gender, i.e. assign either a label M
or F to each person by combining a data term and your knowledge of
contextual information. You decide to pose the problem as a MRF with
the neighbourhood given by the first neighbor (person to the left and
person to the right).

We first consider the likelihood (data) term. You know that the
average male height is 181 cm, and the average female height is 165

cm, and that height for each gender may be described as following a
normal distribution where you assume the standard deviation for each
being the same. For this reason you define the likelihood terms as one
clique potentials

V1(fi) = (µ(fi)− di)
2

where di is the height of person i and µ is defined as µ(M) = 181,
µ(F) = 165. The likelihood energy is the sum of all one-clique poten-
tials

U(d| f) =
6

∑
i=1

V1(fi) .

To find the configuration which minimizes the likelihood energy you
can consider the one-clique potentials for all i and both labels

(µ(M)− di)
2 : 4 49 1 361 36 256

(µ(F)− di)
2 : 196 81 289 9 100 0

Obviously, the minimal likelihood energy is obtained if we choose a
label which minimizes the cost for each i, resulting in for labeling

f D =
[

M M M F M F
]

, (3.2)

note for image analysis 25

and giving U(d| f D) = 99. Another thing to notice is that additional
cost for deviating from this labeling varies, depending on which label
we change. For example, it costs additional 352 to label the forth person
as male, while it costs only additional 32 to label the second person as
female.

Now you want to incorporate the contextual (prior) information you
posses about the gender of the people standing along the bar counter.
Your experience is that females usually stand next to other females, men
stand next to other man, and while a configuration with a man standing
next to a woman occurs less frequently. For this reason, you decide to
incorporate a cost β which penalizes a less-frequent configuration. For
prior energy you define 2-clique potentials as

V2(fi, fi+1) =

{
0 if fi = fi+1

β otherwise

The prior energy is the sum of all 2-clique potentials for all 2-cliques in
a configuration.

U(f) =
5

∑
i=1

V2(fi, fi+1)

Obviusly, this prior energy is minimal for a configuration with all labels
bein equal, while spacialy alterating labels yield maximal prior energy
of 5β. The prior energy for the configuration which f D minimizes the
likelihood energy (3.2) is U(f D) = 3β.

Last modelling choice involves setting a suitable parameter β. This
choice depends on your confidence in the prior, compared to the data.
You choose to use β = 100. According to (3.1), the posterior energy of
configuration f D is

U(f D|d) = U(d| f D) + U(f D) = 99 + 300 = 399 .

The question is, can we find another configuration which yields a
smaller posterior energy? And finally, which configuration minimizes
posterior energy?

For our small problem, we can simply try reducing the cost for the
posterior term. Worth considering are two configurations

f P =
[

M M M M M F
]

,

f O =
[

M M M F F F
]

.

Relatively easy we can confirm that configuration f O with U(f O|d) =
163 + 100 = 263 is an optimal configuration.

Note again that the prior knowledge encodes our assumptions of
the data, and it also influences the result such that what we find is
what we expect to find. Our experience (prior knowledge) about people

26 anders bjorholm dahl vedrana andersen dahl

standing in a bar might have motivated another prior energy which
encourages configurations where males and females stand next to each
other. For example a prior

V2(fi, fi+1) =

{
β if fi = fi+1

0 otherwise

This prior would yield in another optimal configuration.
Note also the distinction between modeling (setting up the problem

by defining a likelihood term and a prior term) and optimization
(finding the configuration which minimizes the posterior energy).

3.1.2 Exercise: Modelling

In this exercise we define an objective function for segmenting a noisy
image, similar to the problem in Li Section 3.2.2. Here we will compute
the energy of different configurations to confirm that minimizing an
objective function leads towards the desired solution. The model we
use is very similar to the model used for gender determination. In
this exercise we use synthetic data (i.e. we produce our input data by
adding noise to a ground truth image) shown if Figure 3.1. This allows
us to evaluate the quality of our objective function. In the text the
input image is denoted D and ground truth segmentation SGT where
elements of SGT are from the set {1, 2, 3} corresponding to the darkest,
medium gray, and brightest class.

Figure 3.1: A ground truth (the desired
segmentation should resemble ground
truth) and a noisy image (input data).

Write a function that given D and a segmentation, for example SGT,
produces a histogram of the pixel intensities and histograms of the pixel
intensities divided into segmentation classes. An example is shown in
Figure 3.2. What does this histogram say about the chances of obtaining
a reasonable segmentation of D using a method which considers only
pixel intensities, for example thresholding?

0 64 128 192 256

0

50

100

150

Figure 3.2: Histograms.

Now we pose image segmentation as a MRF. Sites are pixels, labels
are from {1, 2, 3}, and we choose a first-order neighborhood (four
closest pixels). As in the previous example, we define the one-clique
potentials for the likelihood energy as the squared distance from the
class mean

V1(fi) = α (µ(fi)− di)
2

where di are intensities of the (noisy) image, fi are pixel labelings given
by the configuration, and µ is estimated from the histogram and set
to µ(1) = 70, µ(2) = 130, µ(3) = 190. The parameter α will be used to
weight the data term and may be set to for example α = 0.0005. The
likelihood energy is defined similar to before

U(d| f) = ∑
i

V1(fi) ,

note for image analysis 27

where summation covers all image pixels. Similarly to the previous ex-
ample, we define 2-clique potentials for discrete labels which penalizes
neighbouring labels being different

V2(fi, fi′) =

{
0 fi = fi′

1 otherwise
,

and prior energy

U(f) = ∑
i∼j

V2(fi, fi′)

where summation runs over all pairs of neighbouring pixels. The
posterior energy is now given by (3.1).

We want to check that our optimal function leads to the desired
result. That is, we want to make sure that posterior energy gets smaller
when we approach the desired result. Therefore we want to compute
the likelihood, prior and posterior for some reasonable segmentations
(MRF configurations). For the purpose of this testing, produce at least
two segmentations of the noisy image D. The first segmentation ST is
obtained by thresholding D at intensity levels 100 and 160 (valleys of
the histogram). The second segmentation SM is computed by median
filtering ST using an appropriate kernel. You are welcome to produce
additional configurations, e.g. by applying a Gaussian filter to D prior
to thresholding, or by using morphological operations. For all candidate
configurations you should take a look at the intensity histograms of
three classes, similarly as for the SGT earlier.

Write a function which given an image D, a configuration S and
the MRF parameters µ and α, returns computed likelihood, prior and
posterior energy. Use your function for computing energies of different
configurations, also the ground truth SGT. If we consider only the
likelihood, which configuration is the most probable? If we consider
only the prior energy, which configuration is the most probable? What
if we consider the posterior energy? Would you expect that minimizing
the optimal energy leads to a good segmentation? If not, try adjusting
β and improve the posterior.

Tasks

1. Implement a function which produces histograms, as explained in
the text.

2. Implement a function which computes segmentation energies, as
explained in the text.

3. Produce a number of configurations. Apply your two functions to
all configurations, and answer the questions from the text.

28 anders bjorholm dahl vedrana andersen dahl

3.1.3 Exercise: Iterative optimization

The interaction modelled by MRF prior makes optimization (finding
an optimal configuration) of the MRF very hard. Standard MRF opti-
mization methods may be very slow, but efficient graph cut algorithms
can be used for a subset of problems. To gain a better understanding
of MRF we will first implement an standard MRF optimization called
iterated conditional modes (ICM), briefly sketched in Li Section 3.2.2.
and elaborated in Section 9.3.1. In the following exercise you will be
given graph cut implementation which you will use for optimization.
You may chose to first solve the problem using graph cuts, and then
return to this exercise if time allows.

The general principle of ICM is the following. Every pixel contributes
to the overall energy only locally, so for each pixel we can find a
label that locally minimizes the energy (i.e. maximizes the conditional
probability given all other labels). The iterative process continues until
convergence. In our case, for a pixel i we need to compute

V(fi|di, fNi) = α (µ(fi)− di)
2 + #{ fi 6= fi′ |i′ ∈ Ni}

(see Li Equation (9.15) from Section 9.3.1) for three possible labels
fi ∈ {1, 2, 3} and choose the label yielding the lowest value. The
symbol # denotes the number of neighbors of i which have a label
different from fi.

To implement ICM, write a function which takes as input a segmen-
tation S, the data term D (the noisy image), and MRF parameters µ and
α. The function should output conditional local potential, i.e. values
V(fi|di, fNi) for all pixels and all labels. For our purpose the output
should have three layers, each layer as big as the image, such that the
k-th layer gives a pixel-wise local energy for label k. You can can use
your function to iteratively improve the configuration by labeling each
pixel with the locally optimal label.

The convergence of ICM is guaranteed only for serial updating
(updating labels one after another). To see why, we will first try parallel
update (updating all labels at once), where we in each iteration at once
overwrite all labels of the current configuration with locally optimal
labels. Start for example with ST and run for 10 or 20 iterations. What
do you observe? Does the algorithm converge?

Instead of a fully serial update, we can in parallel update a set of
labels where no two sites are neighbors. In our case, this can be obtained
by dividing all pixels in two sets using a checkerboard pattern. Why can
we update such sets in parallel, and why use a checkerboard pattern in
our case? Modify the algorithm such that you in each iteration compute
conditional local potentials (using the function you wrote) and update
half of the pixels according to checkerboard pattern, then compute

note for image analysis 29

local potentials again and update the other half of the pixels. Does the
algorithm converge?

Compute the posterior energy for the configuration obtained us-
ing ICM, and compare with the energies for configurations given by
ground truth and all the segmentation configurations. Did you come
closer to the optimal configuration? Try also starting with a random
initialization of the labels. Do you obtain the same result regardless
of the initialization? Try reducing and increasing the smoothness by
changing the weighting of likelihood and prior. For example, make α

10 times bigger or 10 times smaller. What do you observe?
Optionally, you can try implementing another popular and well-

known optimization algorithm. The Gibbs sampling algorithm (Li
Section 7.1.6) is a randomized sampling algorithm for finding the
optimal configuration of the MRF. It is based on changing the labeling
fi with a probability which is proportional to the probability of the
labelings fi. The sketch of the Gibbs sampling algorithm is as follows.
Initialized based on the maximum likelihood. Iterate for a number
of times. In each iteration compute the local probability of each label
every pixel. In our case this is easily obtained from the output of your
function by taking an exponential of negative energy and normalizing
probabilities to sum to 1. For each pixel, divide the interval [0, 1]
according to probabilities, then choose a random number from [0, 1]
and determine which subpart it belongs to – this indicates the label
which should be assigned for the pixel. The Gibbs sampler mig can be
further improved using simulated annealing (Li Section 10.1). An easy
way of implementing simulated annealing is to multiply conditional
local potentials with a increasing value, for example iteration number.

3.1.4 Example: Graph cuts

A binary (two label) MRF problem with submodular second order
energy (loosely speaking an energy favoring smoothness) can be exactly
solved by finding a minimum s-t cut of a graph constructed from the
energy function 2,3,4. A minimum s-t graph cut can be found e.g. using 2 Yuri Boykov, Olga Veksler, and Ramin

Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transac-
tions on Pattern Analysis and Machine Intel-
ligence, 23(11):1222–1239, 2001

3 V Kolmogorov and R Zabih. What
energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):
147–159, 2004

4 Y Boykov and V Kolmogorov. An exper-
imental comparison of min-cut/max-flow
algorithms for energy minimization in vi-
sion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137,
2004

the Ford and Fulkerson algorithm, or an efficient freely available graph
cut implementation by Boykov and Kolmogorov. A multiple-label
discrete MRF problem can also utilize graph cuts via iteratively solving
multiple two-label graph cuts, e.g. by using α expansion.

In the following exercises we are using graph cuts to optimize dis-
crete MRF. MATLAB users may use the provided code, in particular the
GraphCutMex function. This is a slightly modified version of the older
Boykov implementation, the newest version can be found at http://
pub.ist.ac.at/~vnk/software.html. Python users may use PyMaxflow
package documented at http://pmneila.github.io/PyMaxflow/index.

http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html
http://pmneila.github.io/PyMaxflow/index.html
http://pmneila.github.io/PyMaxflow/index.html

30 anders bjorholm dahl vedrana andersen dahl

html.
To begin with, we look again at the small example with gender

labeling. Recall that the heights (in cm) of 6 persons are

d =
[

179 174 182 162 175 165
]

and we want to estimate the persons gender. For likelihood we use
squared distance from the means µ(M) = 181, µ(F) = 165. For the
prior we use β = 100 as a penalty for neighbouring labels being differ-
ent.

We want to s-t graph corresponding to this problem. The solution
for this is not unique. The focus is often on constructing a graph with
fewest edges, an approach suggested in Li book Section 10.4.2. However,
you might prefer drawing a more intuitive graph despite a higher
number of edges. This approach is sketched in Figure 3.3. Terminal
edges (linking to source and sink) are used for the likelihood energy
terms, while internal edges model the prior energy terms. Confirm that
a cost of an s-t cut in this graph equals to the posterior energy of the
corresponding configuration.

s

t

1 2 3 4 5 6

4

196

49

81

1

289

361

9

36

100

256

9

β

β

β

β

β

β

β

β

β

β

Figure 3.3: A sketch of a s-t graph for a
gender labeling problem.

Eterminal =

1 4 196
2 49 81
3 1 289
4 361 9
5 36 100
6 256 0

Einternal =

1 2 β β
2 3 β β
3 4 β β
4 5 β β
5 6 β β

Figure 3.4: Representing a s-t graph us-
ing two matrices, one containing weights
of terminal edges and one matrix for in-
ternal edges.

To be able to compute the optimal configuration using the MATLAB

GraphCut function, we need to create two matrices which contain edge
weights to be passed to the function. The matrix containing terminal
weights and the matrix containing weights between internal nodes for
gender assignment example are shown in Figure 3.4. Python wrapper
has slightly different manner of passing graph weights to the function,
as explained in the package documentation.

Find the minimum s-t cut by calling [Scut,flow] = GraphCutMex

(N,Et,Ei), with first inputs being the number of internal nodes in
the graph, followed by the two weight matrices. What is given in the
outputs? Which configuration is optimal? Change β = 10 and solve
again. Which configuration is optimal now? Try also β = 1000.

Tasks

1. Download and test the provided software for graph cuts. For further
help, we have provided small scripts which show a way of achieving
this.

3.1.5 Exercise: Binary segmentation

Take a look at the bone image V12_10X_x502.png. The image is a slice
from a CT scan of a mouse tibia. You can visually distinguish air (very
dark), bone (very bright) and cartilage (dark). The task in this exercise is
to segment the image in two segments: air and bone. Cartilage should
be segmented together with air. The model we use is still the same as
in the previous exercises, with the likelihood as the sum of squared

http://pmneila.github.io/PyMaxflow/index.html
http://pmneila.github.io/PyMaxflow/index.html

note for image analysis 31

distances, and the prior penalizing neighbouring labels being different.
The bone image is of type uint16, and should be converted into double
precision before any computation. You may also want to divide image
intensities with 216 − 1, as this might simplify the weighting between
the likelihood and the prior term.

Produce the histogram of the image to determine the mean inten-
sities of the air and bone classes. Formulate the likelihood energy.
Construct the matrices containing edge weights of the corresponding
graph. Choose a parameter β and compute the optimal configuration
using the GraphCutMex function. Adjust β to obtain a visually pleasing
segmentation with reduced noise in air and bone. Produce a figure
showing histogram of the entire image, and on top of that the intensity
histograms of the air and bone classes, similar to how it was done in
the modelling exercise.

Tasks

1. Segment bone image of circles into two classes. Check how changing
β affects the segmentation.

Figure 3.5: A bone image.

0 1.6384 3.2768 4.9152 6.5536

10
4

0

0.5

1

1.5

2
10

4

Figure 3.6: A segmentation of bone us-
ing maximum likelihood (top) and max-
imum posterior (middle). Histograms
show intensity distributions for the three
segmented classes.

3.1.6 Exercise: Multilabel segmentation

Multilabel segmentation is obtained using an iterative α expansion al-
gorithm. A MATLAB function multilabel_MRF implements α expansion.
Read the help text of the function for explanation on input and output
variables. Python users may try the maxflow.fastmin which is a part
of maxflow package.

We will first verify the quality of the solution provided by the α

expansion algorithm by returning to the segmentation of the synthetic
image. How does the energy of the graph cut solution compare to the
energies of the configurations found previously? Try changing β to see
how it affects the result.

Use the α expansion algorithm to segment the bone image into air,
cartilage and bone class. The challenge here is to distinguish between
air and cartilage. You should aim at producing a visually pleasing result
with cartilage as solid as possible (without noisy pixels segmented as
air) and air as clean as possible (without noisy pixels segmented as
cartilage). A good result can be obtained by tweaking two parameters:
the mean value for the cartilage class and the smoothness weight β.
As means for air and bone you can use the values estimated from
the histogram, and you may assume the same standard deviation
for all three classes (so there is no need for additional weighting of
the likelihood terms). When adjusting a mean value for cartilage,
choose no smoothing (β = 0) and try to obtain a reasonable (but noisy)
segmentation. Then increase β to remove the noise.

32 anders bjorholm dahl vedrana andersen dahl

After you have tuned the parameters and obtained a nice segmenta-
tion, try segmenting the other bone image (V8_10X_x502.png). Can we
use the same parameters? Why?

3.2 Deformable models

Typically, image segmentation involves modeling of both the image data
and the desirable segmentation. For example, we have used Markov
random fields to impose smoothness to the segmentation. Deformable
models for image segmentation is another strategy which combines
two contributions: the first originating from the image, and the second
imposing smoothness.

The basic principle of deformable models is to perform image seg-
mentation by evolving a curve in an image. The curve moves under the
influence of external forces, which are computed from the image data,
and internal forces which have to do with the curve itself. Deformable
models are generally classified as either parametric or implicit (in the
context of image segmentation also called geometric), depending on
the method used for representing the curve. Despite this fundamental
difference in curve representation, the underlying principles of both
methods are the same 5. 5 Chenyang Xu, Anthony Yezzi Jr, and

Jerry L Prince. On the relationship be-
tween parametric and geometric active
contours. In The Asilomar Conference on
Signals, Systems,and Computers, volume 1,
pages 483–489. IEEE, 2000b

In this exercise we use parametric curve representation, often called a
snake 6, C(s) = (x(s), y(s)) where parameter s ∈ [0, 1] is arclength. In a

6 Michael Kass, Andrew Witkin, and
Demetri Terzopoulos. Snakes: Active con-
tour models. International Journal of Com-
puter Vision, 1(4):321–331, 1988

discrete setting this reduces to a sequence of points, and parameter s be-
comes a discrete index s = {1, . . . , N} indicating ordering of the points.
We consider an image where the task is to separate the foreground from
the background, and we use subscripts F and B for the corresponding
image entities, such as for the image domain Ω consisting of ΩF and
ΩB. At the same time, a curve C divides the image into inside and
outside region, and for those regions we use subscripts in and out.

Deformable models are guided by the segmentation energy E, which
should be defined such that the desired segmentation has a minimal
energy. A segmentation is obtained by moving the curve to minimize
the energy, and the essence of the approach is in deriving energy-
minimizing curve deformation forces F = −∇E. To allow deformation,
the curve is made dynamic (time-dependable), and its change in time,
often denoted evolution, is given by

∂C
∂t

= F(C) .

We use Eext to denote external energy, which is a contribution to the
segmentation energy determined by image data. We use Eint for in-
ternal energy, which has to do with the curve itself. Correspondingly,
deformation forces on the curve are divided into external and internal
Fext and Fint.

note for image analysis 33

This exercise is inspired by the Chan-Vese algorithm 7, a deformable 7 Tony F Chan and Luminita A Vese. Ac-
tive contours without edges. IEEE Trans-
actions on image processing, 10(2):266–277,
2001

model for image segmentation which minimizes a piecewise-constant
Mumford-Shah functional. Chan-Vese uses a implicit (level-set) curve
representation and a two-step optimization. We will use the solution of
the Chan-Vese approach, but will combine it with a parametric curve
representation. For this reason our model uses an external energy
similar to Chan-Vese algorithm, and an internal energy similar to
snakes. The detailed explanation on how external forces are derived
from external energy can be found in the Chan-Vese article. How
internal forces are derived is explained in Chapter 3 of the Handbook
of Medical Imaging, Image Segmentation Using Deformable Models 8, 8 Chenyang Xu, Dzung L Pham, and

Jerry L Prince. Image segmentation using
deformable models. Handbook of medical
imaging, 2:129–174, 2000a

subsection 3.2.1 and 3.2.4. Recall that you already implemented curve
smoothing as one of the introductory exercises during the first week of
the course.

3.2.1 External energy, Chan-Vese

An external energy closely related to the two-phase piecewise constant
Mumford-Shah model is

Eext =
∫

Ωin

(I −min)
2 dω +

∫
Ωout

(I −mout)
2 dω

where I is an image intensity as a function of the pixel position, while
min and mout are mean intensities of the inside and the outside region.
This energy seeks the best (in a squared-error sense) piecewise constant
approximation of I. An evolution that will deform a curve toward an
energy minimum is derived as

Fext = (min −mout) (2I −min −mout) N . (3.3)

where N denotes an outward unit normal.
In other words, curve deforms in the normal direction, and for

every point on the curve we only need to evaluate the (signed) length
of the displacement. We will denote the scalar components of the
force as fext = (min − mout) (2I −min −mout). Note that this can be
written as fext = (min − mout)

(
I − 1

2 (min + mout)
)

, i.e. the signed
length of displacement is proportional to the difference between the
image intensities under the curve and the mean of min and mout.

3.2.2 Internal forces, snakes

The internal energy is determined solely by the shape of the curve. In
the classical snakes formulation internal forces discourage stretching
and bending of the curve

Eint =
1
2

∫
α

∣∣∣∣∂C
∂s

∣∣∣∣2 + β

∣∣∣∣∂2C
∂s2

∣∣∣∣2 ds ,

34 anders bjorholm dahl vedrana andersen dahl

with weights α and β controlling the elasticity (first-order derivative)
and the rigidity (second-order derivative) term. Corresponding defor-
mation forces are

Fint =
∂

∂s

(
α

∂C
∂s

)
+

∂2

∂s2

(
β

∂2C
∂s2

)
. (3.4)

Those regulatory forces are the key to success of deformable models, as
they provide robustness to noise.

Since our snake is discrete, the derivatives should be approximated
by finite differences. The regularization now corresponds to filtering
(smoothing) the curve with filters for the first and the second derivative,
(i.e. a filter

[
1 −2 1

]
and a filter

[
−1 4 −6 4 −1

]
. Those

contributions, weighted by parameters α and β are now used to regu-
larize the curve. In efficient implementation this is done by a matrix
multiplication, and for better stability we use a backward Euler scheme.
For slightly more detail, you can revise the introductory exercise on
curve smoothing 1.1.3.

3.2.3 Final model

For a snake consisting of n points and represented using a n× 2 matrix
C, a final discrete update step is, adapted from Handbook of Medical
Imaging, Eq. (3.22),

Ct = Bint

(
Ct−1 + τ diag(fext)Nt−1

)
. (3.5)

In this expression τ is the time step for displacement, while Bint is
the n× n matrix used for regularizing the curve and taking the role
of the internal forces. Curve normals are represented as n× 2 matrix
N, and pointwise displacement is obtained by multiplying N with a
n× n diagonal matrix containing the displacement lengths (this is in
principle a row-wise multiplication).

3.2.4 Exercise: Segmentation and tracking

We will use a deformable model to segment and track a simple organism
in a sequence of images. You are provided with two image sequences:
crawling amoeba 9 and water bear 10. The same code can be used for 9 The video of crawling amoeba is from

Essential Cell Biology, 3rd Edition Al-
berts, Bray, Hopkin, Johnson, Lewis, Raff,
Roberts, & Walter, https://www.dnatube.
com/video/4163/Crawling-Amoeba
10 The video of water bear is from
Olympus microscopy resources, https:
//www.olympus-lifescience.com/ru/

microscope-resource/moviegallery/

pondscum/tardigrada/echiniscus

both sequences, with only a minor adjustment in pre-processing step.

Tasks Steps for solving the problem are listed below. The exercise
was previously (in 2017) intended for MATLAB users, and this is still
reflected in hints about MATLAB implementation. Those hints were
not removed, in hope that they will show useful both for MATLAB and
Python users.

https://www.dnatube.com/video/4163/Crawling-Amoeba
https://www.dnatube.com/video/4163/Crawling-Amoeba
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus

note for image analysis 35

1. Read in and inspect the movie data. In MATLAB you may use
VideoReader. You may save the image sequence as a multi-dimensional
array, or as a movie object using im2frame conversion.

2. Process movie frames. For our segmentation method to work, movie
frames need to be transformed in grayscale images with a significant
difference in intensities of the foreground and a background. For
the movie showing the crawling amoeba (which is white on a dark
background), it is enough to convert movie frames to grayscale.
Transforming intensities to doubles between 0 and 1 is advisable, as
it might prevent issues in subsequent processing. For the movie of
the echinicsus, we want to utilize the fact that foreground is yellow
while background is blue. A example of suitable transformation is
(2b− (r + g) + 2)/4, with r, g, b being color channels (with values
between 0 and 1).

12
3

4

5

6

7

8

9
10 11 12

13

14

15

16

17

18

19
20

Figure 3.7: The first frame of a crawling
amoeba and a circular a 20-point snake.

1 2
3

4

5 6

7

8

9

10 11

12

13
14 15

16

17

18

19

20

Figure 3.8: Red curve shows image in-
tensities along the snake in Figure 3.7.
Dashed gray lines indicate min and mout,
while gray line indicates the mean of min
and mout. Signed length of the curve dis-
placement is given by the difference be-
tween the red curve and the gray line.

Figure 3.9: Force on the curve indicated
by arrows. Displacement is in the normal
direction and the length of the displace-
ment is given by the values shown in
Figure 3.8.

3. Choose a starting frame and initialize a snake so that it roughly
delineates the foreground object. You may define a circular snake
with points (x0 + r cos α, y0 + r sin α), where (x0, y0) is circle center,
r is radius and parameter α takes n values from [0, 2π〉. See Figure
3.7 for example, but use approximately 100 points along the curve.

4. Compute mean intensities inside and outside the snake. In MATLAB

you can use poly2mask function.

5. Compute the magnitude of the snake displacement given by Eq. (3.3).
That is, for each snake point, compute the scalar value giving the
(signed) length of the deformation in the normal direction. This
depends on image data under the snake and estimated mean in-
tensities, as shown in Figure 3.8. A simple approach evaluates the
image intensities under the snake by rounding the coordinates of
the snake points. A more advanced approach involves interpolating
the image at the positions of snake points for example using bilinear
interpolation, which is in MATLAB implemented in function interp2.

6. Write a function which takes snake points C as an input and returns
snake normals N. A normal to point ci can be approximated by a
unit vector orthogonal to ci+1 − ci−1. (Alternatively you can average
the normals of two line segments meeting at ci.) Displace the snake.
Estimate a reasonable value for the size of the update step by visu-
alizing the displacement. You should later fine-tune this value so
that the segmentation runs sufficiently fast, but without exaggerated
oscillations. This step corresponds to computing the expression in
the parentheses in the Eq. (3.5).

7. Write a function which given α, β and n constructs a regularization
matrix Bint. Your code from introductory exercise could be used.

36 anders bjorholm dahl vedrana andersen dahl

Apply regularization to a snake. Estimate a reasonable values for
the regularization parameters α and β by visualizing the effect of
regularization. You should later fine-tune these values to obtain a
segmentation with the boundary which is both smooth and suffi-
ciently detailed. This step corresponds to matrix multiplication on
the right hand side of the Eq. (3.5).

8. The quality of the curve representation may deteriorate during evo-
lution, especially if you use a large time step θ and/or weak regular-
ization, i.e. small α and β. To allow faster evolution without curve
deterioration, you can apply a number of substeps (implemented as
subfunctions) which ensure the quality of the snake:

• Distribute points equidistantly along the snake. This can be ob-
tained using 1D interpolation, in MATLAB implemented in function
interp1.

• Constrain snake to image domain.

• Apply heuristics for removing crossings from the snake. We pro-
vide a MATLAB function which detects curve self-intersections,
identifies two curve segments separated by intersection, and re-
verses ordering of the smallest segment.

Figure 3.10: The curve and the forces
after 20 iterations.

9. Repeat steps 4–8 until a desirable segmentation is achieved. Note that
the regularization matrix only depends on regularization parameters
and a number of snake points. This is constant if the size of the
snake and the regularization if fixed, which is a typical case. It is
therefore sufficient to precompute Bint prior to looping. Figure 3.10

shows our 20-point snake during evolution.

10. Read in the next frame of the movie, and use the results of the
previous frame as an initialization. Evolve the curve a few times by
repeating steps 4–8.

11. Process additional frames of the image sequence.

3.3 Assignment on geometric priors

Assignment on geometric priors should demonstrate the use of two
different approaches: Markov random fields and defromable models.
You will be working on the small part of the volumetric data containing
scans of the human posterior interosseous nerve. For better understand-
ing of the goals of image analysis, we provide background information
on the large study involving a complete data set.

note for image analysis 37

3.3.1 X-ray tomography of human peripheral nerves

Understanding nerve disorders caused by trauma and disease requires
a knowledge of the structure of peripheral nerves and their subcompo-
nents. Conventional light and electron microscopical techniques only
allow a two-dimensional visualization of tissues such as peripheral
nerves. Recent advance in synchrotron imaging technique provides
detailed three-dimensional images of tissue, allowing extraction of
morphological information. For a larger study 11, biopsies of the pos-

11 Dahlin L B, Rix K R, Dahl V A, Dahl A
B, Jensen J N, Cloetens P, Pacureanu A,
Mohseni S, Thomsen N O B, and Bech M.
X-ray phase contrast zoom tomography
to visualize human diabetic peripheral
nerves. Nature Methods (in submission)

terior interosseous nerve at wrist levels were taken from otherwise
healthy subjects and from subjects with type 1 and 2 diabetes. Biopsies
were stained in osmium (a heavy metal used for staining lipids) which
provides contrast to the image, and embedded in Epon (epoxy resin)
for stability. The samples were then imaged using X-ray phase con-
trast zoom tomography at the European Synchrotron Radiation Facility
(ESRF, Grenoble, France) with an isotropic voxel size of 130nm. In
the obtained volumetric data, the nerve fibers are aligned with the z
direction, and the stained myelin sheaths around axons (see Figure 3.11

for a schematic drawing of a nerve) appear circular in the x-y slices
through the volume, as shown in Figure 3.12.

Node of Ranvier
Layers of myelin

Axon

Nodes of Ranvier
Myelin sheaths

Axon

Figure 3.11: A schematic drawing of a
nerve showing an axon, myelin sheaths
and nodes of Ranvier.

Figure 3.12: One slice from the volume
showing peripheral nerves, and a region
which was extracted for the exercise.

Complete data-set contains more than 10 samples, each resulting
in a volume of a size 2048× 2048× 2048 voxels. For the exercise, we
extracted a small region from one volume, as indicated in Figure 3.12.
Furthermore, extracted volume has been downsized by a factor 2, which
yields a volume of size 350× 350× 1024. The extracted volume is saved
as a stacked tiff image nerves_part.tiff.

3.3.2 Segmentation of myelinated nerves

A good contrast between stained myelin sheaths and the background
makes it possible to clearly distinguish peripheral nerves in the vol-
ume. For this reason, a reasonable segmentation strategy would utilize
dark appearance of the myelin. Segmentation may be improved by
incorporating a prior knowledge about the directionality of the nerves.

Furthermore, circular appearance of myelin sheaths allows a segmen-
tation of a single nerve by aligning a closed curve with the periphery
of the myelin. For this, the circle can be manually initialized around
the nerve, and automatically moved to the boundary of the myelin. For
segmenting a whole nerve, the curves are automatically propagated
trough the volume, such that the surface moves only slightly between
the slices, and is in every slice attracted to the boundary of the myelin
layer.

Figure 3.13: 3D visualization of seg-
mented of myelinated nerves.

Try segmenting nerves Markov random fields and deformable mod-
els. In Figure 3.13, 3.14, 3.15 and 3.16 we show results of image analysis
performed for the original study. However, those results are obtained

38 anders bjorholm dahl vedrana andersen dahl

on a full-resolution volumes, and using more advanced image analysis
techniques than covered in the lessons. Your results might therefore be
of poorer quality.

Figure 3.14: Axons segmented using de-
formable curves visualized on a single
slice.

Figure 3.15: 3D visualization of axons
segmented using deformable curves.

Figure 3.16: Three of the axons with visi-
ble node of Ranvier.

For this open assignment, we provide some tips, but you are free to
investigate other approaches. The tips listed below will be extended
and elaborated during the lesson on Wednesday.

• For MRF segmentation you might consider further downsizing the
data or using only a subset of slices.

• When using MRF segmentation you can process the volume slice-by-
slice. This corresponds to a situation where MRF-modelled smooth-
ness prior has a parameter β for two neighbouring pixels in x and
y direction, while the change of labels for neighbours in z direction
is not penalized. However, note that nerves are elongated in the
direction orthogonal to image slices. For this reason, it would be
more appropriate to set MRF-modelled smoothness especially high
along the z direction, and this calls for a full 3D implementation of
the MRF segmentation.

• When using deformable models note that assumption of Chan-Vese
about a object of different intensity than the background does not
apply for nerves. This is because a nerve consists of a dark myelin
and a bright axon. Instead of allowing for the automatic estimation
of the parameters min and mout by averaging, it might be better to
fix those parameters using the values estimated from the images.
Alternatively, values min and mout may be estimated from a thin
band inside and outside the curve.

• The robustness of the deformable models might be improved by
moving the curve towards the point where the change of intensity
in the normal direction is high. This can be implemented by un-
wrapping the image following the curve normals. The gradient in
normal direction can than be computed for the unwrapped image,
and curve moved to the point where gradient is high.

• A node of Ranvier (see Figure 3.11 for schematic drawing of a nerve)
can be seen on a few of the nerves in the volume to be analysed, as
shown in Figure 3.16. Nodes are of a high interest for understanding
nerve disorders. However, those might be challenging to capture due
to the lack of myelin. Your method is not expected to capture the
nodes of Ranvier, and if you succeed in segmenting those, remember
to document it in your report.

• Visualizing results in 3D usually provides a useful information on
the segmentation results. However, there is not a required for your
report.

note for image analysis 39

Tasks

1. Perform a binary segmentation of the data using MRF and a seg-
mentation of myelinated nerves using deformable models.

2. Make a report containing a brief (a paragraph or two) description of
your approaches and a visualization of your final results. Write also
a paragraph discussing your result and the possible improvements
of your approach.

3. Collect your code in a zip file and submit together with the report.

4 Neural networks

Neural networks are very useful for a range of image analysis tasks
including segmentation, detection, etc. Neural networks are often
easy to adapt to a specific problem and they allow approximating an
unknown function f ∗ that based on some input x can predict the output
y even without a priori knowing the relation between x and y. This
is done by learning a set of parameters θ from a training set, i.e. of
corresponding input values X and predictions Y. In image analysis
problems the input will typically be an image or a part of an image,
and the output is a scalar vector or an image.

x0

x1

xD

h0

h1

hM

y1

yK

w(1)
10

w(1)
11

w(1)
1D

w(1)
M0

w(1)
M1

w(1)
MD

w(2)
10

w(2)
11

w(2)
1M

w(2)
K0

w(2)
K1

w(2)
KM

inputs hidden units outputs

Figure 4.1: Example of a neural network
with an input layer, one hidden layer, and
an output layer. This is termed a one
layer network, since it has one hidden
layer. Typically, there will be many hid-
den layers.

A range of high-performance libraries for neural networks exists,
that are very well suited for solving a number of problems also in image
analysis. The aim here is however to understand the basic elements of
neural networks and get experience with their functionality. This will
be done by implementing a feed forward neural network, a Multilayer
Perceptron (MLP). The first task is to separate simple point sets, and
this is chosen both to ensure that the implementation is correct, and to
get some experience with various parameters. Later this will be applied
to image classification and image segmentation.

4.1 Feed forward neural network

A neural network is modeled as a directed graph as shown in Figure
4.1. The input layer is shown on the left, hidden layers are in the
middle, and the output layer is to the right. This exercise is based
on the description in the Deep Learning book1 but also Chapter 5 in 1 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

the book Pattern Recognition and Machine Learning2 gives a good

2 CM Bishop. Pattern recognition and ma-
chine learning (information science and
statistics), chapter 3, pages 138–147, 2006

introduction to neural networks.

4.1.1 Forward model

The fundamentals for the deep learning method are explained in the
Deep Learning book3, but here we will give a brief introduction to a 3 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

simple feed forward network. You will later implement a more general
version of a feed forward network, but first we will focus on the basic

42 anders bjorholm dahl vedrana andersen dahl

elements. The network shown in Figure 4.1 contains an input layer
of three nodes (neurons), where two are the input variable (x1, x2)

(independent observations) and x0 = 1 is the bias node. The hidden
layer contains four nodes including three nodes connected to the input
layer (h1, h2, h3) and the bias node h0 = 1, and the output layer contains
the two predicted values (y1, y2). The weights connecting the nodes are
termed w(l)

ij connecting node j from layer l − 1 to node i in layer l.
The values of the nodes in the hidden layers are computed by first

computing a weighted linear combination zi of the node values and the
edge weights followed by an activation function, and we we use the
max function a(zi) = max(zi, 0), which in deep learning is called the
rectified linear units function to obtain hi. We have

zi =
D

∑
d=0

w(1)
id xd , (4.1)

hi = a(zi) = max{0, zi} , (4.2)

ŷj =
M

∑
m=0

w(2)
jm hm . (4.3)

We use the softmax function to get the values of y

yj =
eŷj

∑K
k=1 eŷk

. (4.4)

We use the cross entropy loss function

L = −
K

∑
k=1

tk log yk , (4.5)

where tk is the target value of the predictionwhere

tk =

{
1 if class label is k
0 otherwise

. (4.6)

4.2 Backpropagation

We now want to adjust the weights of the network to minimize the loss
over a training set of inputs and the associated target values. This is
done trough the backpropagation algorithm which uses an iterative
optimization method called stochastic gradient descent. Just as in
gradient descent the loss is minimized by taking steps proportional to
the negative gradient. However, we do not consider loss function for all
inputs and targets at once. Instead, we consider one input (or a smaller
sample of inputs) in a random order. The derivation below computes
update for one iteration of the stochastic gradient descent.

note for image analysis 43

We will evaluate derivatives for a certain (fixed) input in order to
determine how change in each w(l)

ij affects L, and then we will use an
update

w(l)new
ij = w(l)

ij − η
∂L

∂w(l)
ij

,

where η is a user-chosen learning rate.
Change in each w(l)

ij contributes to the change in L only trough z(l)i
and using the chain rule the derivative may be separated into two
elements

∂L

∂w(l)
ij

=
∂L

∂z(l)i

difficult

∂z(l)i

∂w(l)
ij

easy

.

Since z(l)i is a linear function of w(l)
ij the second (easy) derivative evalu-

ates to h(l−1)
j (or, in the case of the first layer, input values xj). This is

valid regardless of the non-linear activation. The first (more difficult)
derivative needs to be evaluated for each z(l)i and we denote those

values by δ
(l)
i , such that we have

∂L

∂w(l)
ij

= δ
(l)
i h(l−1)

j . (4.7)

Notice the simplicity: the update for weight w(l)
ij is a product of two

values, the first value depends only on the to-node and the second
value depends only on the from-node.

We still need to evaluate δ
(l)
i , i.e. establish how a change of z(l)i affects

L. This depends only on what happens in the layers further down the
pipeline, and on the choice of the non-linear activation used on z(l)i . We
distinguish between the last layer (where we use the softmax function)
and the internal layers.

x0

x1

x2

h0

h1

h2

h3

y1

y2

W(1) W(2)

Figure 4.2: Simple three layer neural net-
work.

For the last layer we express L as a function of z(l
∗)

k

L = −∑
k

tk ln
exp z(l

∗)
k

∑j exp z(l
∗)

j

=
using the proper-
ties of ln and the
distributive rule

= −∑
k

tkz(l
∗)

k + ∑
k

tk

= 1

ln ∑
j

exp z(l
∗)

j

equal for all k

.

The derivative of L with respect to z(l
∗)

i is therefore

δ
(l∗)
i = −ti +

1

∑j exp z(l
∗)

k

exp z(l
∗)

i = yi − ti . (4.8)

44 anders bjorholm dahl vedrana andersen dahl

Now consider the internal layers. The change in z(l)i may change all
zl+1

k , and any of these changes may affect L. The chain rule gives

∂L

∂z(l)i

= ∑
k

∂L

∂z(l+1)
k

we have

∂z(l+1)
k

∂z(l)i

we need

.

The first set of derivatives are δ
(l+1)
k for the layer further down the

pipeline. We already evaluated those for the last layer in (4.8), and this
is why we compute the update backwards trough the network. The
only remaining is to determine how the change of z(l)i affects z(l+1)

k .

From definition (4.1) we see that z(l+1)
k is a linear function of a

(
z(l)i
)

which gives

∂z(l+1)
k

∂z(l)i

= w(l+1)
ki a′

(
z(l)i
)

,

Figure 4.3: Scatter plots of point sets to
test neural network

where a′ denotes the derivative of the activation function, which for
ReLU function takes a value zero for arguments smaller than zero, and
one otherwise. This is easy to determine by assessing whether h(l)i is
zero or larger. The final expression for internal layers is

δ
(l)
i = a′

(
z(l)i
)
∑
k

w(l+1)
ki δ

(l+1)
k . (4.9)

4.3 Implementation

You are now ready to implement your neural network.

Data preprocessing The recommended preprocessing is to center the
data to have mean of zero. For features of different scale, it is
advised to normalize the scale along each feature.

Initialization Weights should be initialized with small numbers. Initial-
izing with zeros is not a good idea, as it introduces no asymmetry
between neurons. The current recommendation in the case of neu-
ral networks with ReLU neurons is to draw the weight from the

Gaussian distribution with standard deviation of
√

2
n , where n is the

number of inputs to the neuron.

Batch optimization A variant of stochastic gradient descend splits the
training data into smaller subsets (minibatches) and updates weight
according to the average of the gradients for the minibatch. One
cycle through the entire training dataset is called a training epoch.

Matrix multiplications The layered structure makes it efficient to evalu-
ate and train neural networks using matrix vector operations. The

note for image analysis 45

forward propagation trough layers is evaluated using a product

h(l) = a
(
W(l)h(l−1)) , (4.10)

where vectors h(l) and h(l+1) contain values h(l)i and h(l+1)
i (without

a bias), W(l) is a matrix containing weights and a is activation.
Vectorized expression (4.10) is also valid when passing multiple
inputs trough the network: a 2×m input results with a 2×m output.
Likewise, during training, values δ

(l)
i can be represented as vectors,

such that computation (4.9) utilizes a matrix multiplication, while
(4.9) becomes an outer product of two vectors. When working with
batches (4.9) is a matrix-matrix multiplication.

4.3.1 Setting up the problem

You should implement the network shown in Figure 4.2 using the
description given above. This network contains a single hidden layer
and takes a two dimensional input and classifies the input to a two
dimensional output. Before you get there you should construct some
test data for running your method. You can create test point-sets similar
to the ones shown in Figure 4.3. In this experiment you will use the
same points for training and testing. This first experiment is to ensure
that you build the neural network in a correct way, and later you will
test the performance of your method on an independent validation
dataset.

4.3.2 Simple three layer network

You should start with a three layer network with a single hidden layer
with five neurons, i.e. four neurons that are connected to the input layer
and a bias variable. It is a good idea to start making a hand drawing of
the network you should implement will the nodes, edges and notation
for the parts of the network.

Tasks

1. Start by implementing the forward propagation step with random
weights. Make sure that it works as expected. It is important to check
that the obtained results make sense. This is easy when working
with 2D data and can be done by sampling points on a regular grid,
which can be displayed as an image where each pixel takes the label
number.

2. Make a script that computes the classification results on a regular
grid. You can look at the results from your forward propagation
with random numbers.

46 anders bjorholm dahl vedrana andersen dahl

3. Implement the backpropagation algorithm. Note that both the for-
ward and backward propagations can be implemented efficiently
using matrix operations. Display the loss as you iterate to ensure
that your algorithm is converging.

4. Test your implementation on the generated data. What should the
learning rate be? How is performance affected by noise? Does it
converge to the same result each time you run it?

4.3.3 Variable number of layers and hidden units

In the exercise above you have obtained a neural network with a fixed
architecture, i.e. the number of neurons and hidden layer. The ar-
chitecture is however central in modeling with neural networks, and
therefore you should make the number of layers and the number of
neurons in each of the hidden layers a part of your input choice. You
will also be needing this flexibility in the later exercises for classifying
the MNIST handwritten digits.

Figure 4.4: Result of training on the input
data shown in colored points, and the test
result is shown in the pixel colors in the
background.

Tasks

1. Implement a neural network keeping the single hidden layer and
with variable number of hidden units.

2. Implement a neural network with variable number of hidden layers
but with variable number of hidden units. Now you can play around
with your model and from here it is easy to modify it to include
other elements like other activation functions.

3. Again test your implementation on the given data.

The expected output is shown in Figure 4.4. The coloring of the
pixels in the background is obtained by running all the coordinates of
the pixels in an through the neural network, and coloring the result in
dark or bright gray depending on the classification result.

Figure 4.5: Example of the MNIST im-
ages.

4.4 MNIST classification

In this exercise you should build a neural network for classifying
the MNIST image data. Performance will be measured in number of
misclassified images, and the goal is to obtain the least result.

The MNIST dataset contains images of handwritten digits of 28× 28
pixels as shown in Figure 4.5. Ground truth class labels are given
together with the images. The ground truth is 10 dimensional vectors
with 1 in the dimension representing the class containing the digit
and zeros elsewhere. MNIST contains 60000 images for training your
network. If you use all 60000 images for training your network, you

note for image analysis 47

might overfit your model, and to choose when to stop training you can
split the data into a training and validation set. You can for example use
50000 images for training the network and reserve 10000 for validating
it. By classifying the validation images, you can measure if you have
overfitted your model, which is seen by a drop in classification perfor-
mance of the validation data. In addition there are 10000 images for
testing, but these should only be used for evaluating the performance
of your networks after they have been trained.

94.14% success

0

1

2

0

4

5

1

2

0

0

3

2

0

2

3

2

10

0

8

0

13

9

3

7

14

23

4

0

0

17

0

22

2

12

9

4

1

2

3

1

1

12

3

4

25

8

1

5

20

5

12

4

15

5

12

3

3

1

9

7

1

2

0

2

14

21

5

8

0

0

3

23

4

1

10

18

7

16

8

11

8

9

6

1

12

28

4

1

10

7

965

1113

951

944

930

817

920

952

891

931

0 1 2 3 4 5 6 7 8 9

target

0

1

2

3

4

5

6

7

8

9

c
la

s
s
if
ic

a
ti
o

n

Figure 4.6: Table showing a classification
performance example of a classification
of the MNIST handwritten dataset.

0 1 2 3 4 5 6 7 8 9

target

0

1

2

3

4

5

6

7

8

9

c
la

s
s
if
ic

a
ti
o

n

Figure 4.7: Examples of classified hand-
written digits and misclassified digits.

The rules for the competition are:

1. Implement your own neural network for classifying the MNIST
images.

2. Train the neural network on a part of the training data (e.g. 50000

images) and validate it on another part (e.g. the remaining 10000

images).

3. When you are satisfied with the obtained result – upload the trained
network together with Matlab or Python code for running it.

4. Hand in a description of your network and a guide on how to run
your code

5. Be a fair player and do not use the MNIST test data for training your
network (can be found on the internet, but do not use it!).

6. Do an effort in making the code efficient.

4.4.1 Modifications of your network for MNIST

The classification will be using a fully connected feed forward neural
network, similar to the one you implemented last exercise. But in
contrast to last exercise, where data was points in two dimensions,
you now have images. We treat these as vectors, so even though
MNIST images are only 28× 28 pixels the vector representation is 784

dimensions. Therefore, the network should take in 784 dimensional
vectors and return a 10 dimensional vector for classifying the digits 0

to 9. You can use the book on deep learning by Goodfellow et al. 4 to 4 Ian Goodfellow, Yoshua Bengio, Aaron
Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

get ideas for this exercise.
Obtaining a strong classifier requires many iterations of the back-

propagation algorithm using 50000 training images. Therefore, it is a
good idea to utilize vectorized code in your implementation. This can
be done by computing the gradients for subsets of the training data
using minibatches. You can have a minibatch as a matrix and compute
the forward propagation and gradients using matrix operations. By
averaging the gradients obtained from the minibatch, the backprop-
agation can be carried out in the same way as you would do when

48 anders bjorholm dahl vedrana andersen dahl

training with one sample at a time. Due to the averaging, the obtained
gradients are less affected by noise and it is typically possible to have
higher learning rates.

A part of optimizing the neural network is by changing its architec-
ture. Therefore, it is recommended that you implement your network
such that you can change the number of layers and the number of
neurons in each layer.

1. Implement a fully connected neural network for MNIST classification.
The data should be normalized and centered, i.e. vectors of unit
length using the 2-norm and with zero mean. Besides vectorizing
the code it is also worth considering the data type. Single is faster
than double, so you should consider if you want faster computations,
at the cost of lower precision. You can experimentally evaluate if the
high precision is necessary.

2. Train the network and plot the training and validation error for each
iteration (epoch). The dataset could be split into 50000 images for
training and 10000 for validation.

4.4.2 Optimizing the neural network

A large number of techniques for optimizing the performance of the
neural network has been proposed. Neural networks are typically
initialized with random numbers, but the performance depends on
the choice of the initialization strategy. You can therefore optimize the
network by experimenting with different initialization strategies.

Optimization with stochastic gradient decent can be slow, but the
updating the gradients using momentum can accelerate the learning
rate. Momentum is obtained by computing the gradients as a weighted
combination of the previous gradient and the new gradient. Hereby,
the gradient is computed as a moving average with exponential decay.
Another way of ensuring convergence of the gradient decent is by
adapting the learning rate. Here you can adapt the learning rate to the
individual gradient estimates.

1. Implement one or more optimization strategies and document how
it affects the obtained result.

4.4.3 Regularization methods

It is important that the neural network generalizes well such that it
can classify new unseen data. Since neural networks often have many
parameters it is easy to overfit the model, especially on small datasets
where a very low training error can be obtained, but the validation error
will be high. One way to overcome small datasets is through dataset

note for image analysis 49

augmentation, where fake data is fabricated by small modifications of
the input data. This can be done by small permutations or by adding
small amounts of noise. Hereby a much larger dataset can be obtained,
which can help the training.

Instead of adding noise to augment the training data, small amounts
of noise may be added to the hidden units in the network. You can add
random noise in each minibatch iteration. Noise can also be added to
the output targets for obtaining better performance.

Dropout is another method for regularizing the neural network. Here
a random selection of neurons are set to zero during each minibatch
iteration leaving out these neurons in that iteration. Setting the neurons
to zero resembles having a number of different neural networks and is
inspired by ensemble methods.

1. Try experimenting with regularization methods. You can also get
inspired by architectures that other people have had success with.

4.5 Convolutional neural networks

Convolutional neural networks (CNNs) have many aspect in common
with multilayer perceptrons (MLPs – fully connected feed forward
neural networks) such as being a directed acyclic graph with weighted
edges and non-linear activations. Instead of having unique weights for
all connections, the CNNs share their weights, which means that only
one edge weight is learned for many edges. This results in a significant
reduction in number of model parameters, and therefore makes it
possible to have much larger input data compared to MLP networks.
Furthermore, the shared weights can efficiently be implemented as
convolutions, which for images are 2D convolutions. The parameters
that must to be learned are the weights of the convolutional kernels,
which similar to MLPs, are learned using backpropagation.

Working with images in 2D makes it possible to apply additional
operations to the hidden layers. This includes for example a pooling
step typically combined with a down-scaling step. Max-pooling is an
example of a widely used pooling method, where pixels are replaced by
the local maximum in a local neighborhood. Max-pooling ensures that
only the important features are kept, and makes the analysis robust to
small translations. There is a number of other operations that can be
applied, and an overview is given in chapter 9 in Goodfellow et al.5. 5 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

Despite that CNNs have many aspects in common with MLPs, they
are typically more complicated and therefore not as simple to im-
plement. A large number of software frameworks are available, and
training neural networks for many engineering applications will in-
volve GPU processing. This is however implemented in a user friendly

50 anders bjorholm dahl vedrana andersen dahl

way in many of the software packages and highly sophisticated neu-
ral networks can be developed using high-level programming using
e.g. Python that makes these frameworks easy to use.

4.5.1 Exercise

In this exercise we will work with existing software frameworks and
we will use a pre-trained network, namely the VGG19

6. We will 6 Karen Simonyan and Andrew Zisser-
man. Very deep convolutional networks
for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014

use a network that is trained for the 1000 categories in the ImageNet
challenge7, but instead of classifying photographs we will use it for

7 http://www.image-net.org/classifying microscope images of histopathology tissue samples.
The data originates from the CAMELYON17 challenge8 for breast 8 https://camelyon17.

grand-challenge.org/cancer diagnosis. In clinical practice, a pathologist will spend long time
inspecting images of tissue that has led to much research in automating
this inspection task, which is also the goal of the CAMELYON17 chal-
lenge. Here the aim is to detect and classify breast cancer metastasis
from so-called whole-slide images of stained histological lymph node
sections. In this exercise you will do the core part of this analysis,
namely classifying samples to healthy or diseased tissue.

Figure 4.8: Example images of histologi-
cal tissue samples from healthy tissue in
the top and breast cancer metastasis in
the bottom. These are from the CAME-
LYON17 challenge.

In Figure 4.8 some examples of the histopathology images are shown.
These are 224 by 224 pixels color images cropped from whole-slide
images, and you should note that the visual difference between normal
and diseased tissue is small. The basis for the exercise is to classify
these images using pre-trained convolutional neural networks.

Data is provided in file called histo_images.mat where the images
are stored in a 4D array called histo_images and each image is labeled
given in a 1D array called labels with 1 for normal tissue and 2 for
diseased tissue. There are 992 images in all where 629 are from normal
tissue and 363 are from diseased tissue.

Task

1. Load in the data, visualize and get familiar with the format

4.5.2 Setting up the CNN framework

If you use MATLAB you should use MatConvNet9 and if you use Python

9 http://www.vlfeat.org/matconvnet/

you should use Keras with Tensorflow10. You should use the VGG19

10 https://keras.io/

model pre-trained for the ImageNet ILSVRC classification task.

Tasks

1. Download the pre-trained VGG19 model for the ImageNet challenge.

2. Get MatConvNet or Keras to work on your computer.

http://www.image-net.org/
https://camelyon17.grand-challenge.org/
https://camelyon17.grand-challenge.org/
http://www.vlfeat.org/matconvnet/
https://keras.io/

note for image analysis 51

3. Make a forward pass on your computer and investigate the output
of the network including access to the hidden layers.

4.5.3 Classifying images

You should do a simple classification of the images using k-nearest
neighbors, based on features extracted from the downloaded CNN. A
part of this is to investigate the features extracted in the hidden layers in
the network. You should not expect improved performance by looking
at the pooling or ReLU layers, since there is no information introduced
in these layers. The features that you should use for classification might
not be the last layer, since it is trained for a very specific task, but still
the chosen layer should be at a deep layer in the network. Therefore, it
is suggested that you look a the fully connected layers, and determine
which is suitable for the classification task.

Tasks

1. Extract and store features for the histopathology images provided
for the exercise. Be careful to preprocess the images, such that they
are normalized and fed into the model.

2. Do a k-nearest neighbor classification based on the extracted features
by measuring the Euclidean distance between image features. You
should take one out and measure the distance to 991 other images
and classify to the most frequent occurring label among k neighbors.
Investigate how k should be chosen.

3. Make an overview of classification performance with different choices
of k and layer from the CNN. Which combination performs best?

5 Free exercise

In this exercise you are free to choose the image analysis case that you
find most interesting. It is expected that you will find a relevant image
analysis problem, implement a suitable analysis method, set up test
data that verifies the correctness of your implementation, and report
and present your results on a poster for the last day at the course.

You are welcome to come up with your own idea for a project, but
you are also welcome to choose from the suggested projects in the
following.

5.1 Texture Analysis

Image texture is important for a range of image analysis problems like
object classification and quality control. Also a number of image pro-
cessing problems like denoising and inpainting are based on principles
of texture analysis. Here you will solve a texture classification based
on the Basic Image Features described in Crosier and Griffin1 and an 1 M. Crosier and L.D. Griffin. Using basic

image features for texture classification.
International Journal of Computer Vision, 88

(3):447–460, 2010. ISSN 0920-5691. doi:
10.1007/s11263-009-0315-0

inpainting problem described in the paper by Efros and Leung2.

2 A.A. Efros and T.K. Leung. Texture syn-
thesis by non-parametric sampling. In
Computer Vision, 1999. The Proceedings of
the Seventh IEEE International Conference
on, volume 2, pages 1033–1038 vol.2, 1999

5.1.1 Data

The data for the exercise is found in a directory called texture_data

that contains images with a wide variety of textures for BIF characteri-
zation used in the first part and corrupted images to be used during
the texture synthesis part of the exercise. You are also welcome to find
your own data set for the exercise.

5.1.2 Basic Image Features

This section will provide a small summary of how BIFs are estimated.
The purpose of BIF is to go from an image of high dimensionality to
a lower dimensional vector representation of the image texture. This
representation uses simple geometric image features and will enable
differentiation between different textures. The following recipe is used
to estimate BIF:

54 anders bjorholm dahl vedrana andersen dahl

1. Convolve with six Gaussian filters to get scale-normalized filter
responses (s, sx, sy, sxx, syy, sxy).

2. Calculate the flat, slope, blob (2×), line (2×) and saddle feature
responses using the formulas from 3 and (s, sx, sy, sxx, syy, sxy) from 3 M. Crosier and L.D. Griffin. Using basic

image features for texture classification.
International Journal of Computer Vision, 88

(3):447–460, 2010. ISSN 0920-5691. doi:
10.1007/s11263-009-0315-0

Step 1.

3. Classify each pixel as flat=0, slope=1, dark blob=2, white blob=3,
dark line=4, white line=5, saddle=6, by finding the label index of the
maximum feature responses of Step 2. Denote the resulting label
image as L.

For a fixed scale, a seven bin histogram can now be formed by
counting how many times a pixel is classified as one of the classes. This
histogram is the BIF of an image for scale σ. Please note that if we
disregard the flat pixels, a six bin histogram is used per scale, however
we are generally interested in a histogram that also models scale.

Four scales: How to get a histogram? When extending this BIF represen-
tation to multiple scales the process of forming a histogram becomes
increasingly complicated. If we choose four scales σ = (1, 2, 4, 8) we
need to run steps 1 - 3 four times. This will lead to a four channel label
image L(x; i), where x is the position in the image and i = 0, ..., 3 for
the four scales. To get the texture characterization, we have to convert
these four channels of the label image into a histogram. Each bin of this
histogram counts how often a specific label configuration occurs across
the four scales. If we ignore flat BIF regions, the pixels can be classified
as one of the labels L(x; i) ∈ {1, . . . , 6}. First we want to translate this
to a number between 0 and 1295 (i.e. 64 = 1296 unique combinations).
This is done in all pixels resulting in an image B(x) by converting the
four BIF classes to one number

B(x) =
3

∑
i=0

(L(x; i)− 1)6i . (5.1)

This means that the label combination [1, 1, 1, 1] is a pixel classified as
slope on all the scales, and similarly [1, 3, 4, 6] is a pixel that is classified
as a slope at the first scale, a blob on the second scale, a line on the
third scale, and a saddle on the fourth scale.

5.1.3 Texture classification

In this exercise you will experiment with Basic Image Features (BIF) for
texture description.

The BIF features are computed from the following equations:

Classify according to the largest of the features:
Flat: εs

note for image analysis 55

Slope: 2
√

s2
x + s2

y

Blob: ±λ

Line: 2−
1
2 (γ± λ)

Saddle: γ

where
λ = sxx + syy

γ =
√
(sxx − syy)2 + 4s2

xy

Suggestions for experiments:

• Illustrate the BIF response in some images using color codes similar
to how this is done in Crosier and Griffin 4. 4 M. Crosier and L.D. Griffin. Using basic

image features for texture classification.
International Journal of Computer Vision, 88

(3):447–460, 2010. ISSN 0920-5691. doi:
10.1007/s11263-009-0315-0

• Show the BIF histogram (set ε = 0, σ ∈ {1, 2, 4, 8}) for an example
image.

• Compare BIF histograms for a total of 30 images (6 texture classes,
5 images per class). Construct a 30× 30 confusion matrix containing
the histogram distances based on the L1-norm (sum of absolute
difference). Show the histogram as an image and explain the pattern.

5.1.4 Texture synthesis: Task 2

In this exercise you will synthesize image texture using a method sim-
ilar to the one presented in 5. This method is based on fitting partly 5 A.A. Efros and T.K. Leung. Texture syn-

thesis by non-parametric sampling. In
Computer Vision, 1999. The Proceedings of
the Seventh IEEE International Conference
on, volume 2, pages 1033–1038 vol.2, 1999

overlapping image patches to an image with holes by sampling (ran-
domly) from a distribution of similar image patches. The distribution is
approximated from the image itself by measuring distances to patches
from the image itself.

Suggestions for experiments:

• Choose or construct a simple test example with repeated texture and
a small hole and fill in the missing part.

• Choose a natural image and fill in a hole. Try varying number of
patches, patch size, hole size, type of image, etc.

• Can the method be used for noise reduction? Experiment with
e.g. salt and pepper noise.

5.2 Optical flow

Small movements between two consecutive frames of an image series
can be modeled as optical flow. The problem of optical flow is to
determine local translations between two frames as a vector field such
that the brightness constancy constraint

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t), (5.2)

56 anders bjorholm dahl vedrana andersen dahl

is fulfilled. Here, x and y are spatial coordinates and t is time. In this
exercise you will implement methods for computing optical flow of the
movement between two images.

A number of algorithms have been suggested for solving the flow
problem, and a simple solution is to match patterns locally using
block matching, where a window around a point in the first image is
translated and compared to a window in the other image using e.g.
sum of squared differences. This is however a time consuming task, so
other methods based on computing differentials have been suggested.
These include the Lucas-Kanade 6 and the Horn-Shunck methods 7 6 B D Lucas and T Kanade. An iterative

image registration technique with an ap-
plication to stereo vision. 1981

7 Berthold KP Horn and Brian G Schunck.
Determining optical flow. Artificial intelli-
gence, 17(1-3):185–203, 1981

that you will work with in this exercise. This exercise is based on the
book Computer Vision: Algorithms and Applications, Chapter 8

8 (can

8 Richard Szeliski. Computer vision: algo-
rithms and applications. Springer Science
& Business Media, 2010

be downloaded from http://findit.dtu.dk/). But you may also find
relevant information from the internet and the two original papers.

In this exercise, different approaches for solving the optical flow
problem are given, and it is suggested that you start by working with
the basic elements of Optical flow and then try working with the Lucas-
Kanade method or the Horn Shunck method and preferably both.
These methods have a number of common elements, so when one is
implemented it is relatively easy to implement the other.

5.2.1 Optical flow

The assumption behind optical flow is that the movement between
frames is small. Therefore, the optical flow can be computed by

Figure 5.1: Two images of the same pat-
ten shifted one pixel to the left, whereas
the center part marked in the red box is
shifted on pixel to the right.

∂I
∂x

u +
∂I
∂y

v = −∂I
∂t

, (5.3)

where u and v are displacements in the horizontal and vertical direc-
tions respectively.

Task: Derive (5.3) form (5.2) by using a first order Taylor approxima-
tion.

In (5.3) two unknown parameters (u, v) must be computed, but in
a single pixel there is just one equation, so the problem is underdeter-
mined. If a small neighbourhood around a pixel is assumed to have
the same displacement, it will be possible to solve (5.3) as a linear least
squares problem, where we have Au = b, where u = [u, v]T .

Task: Write up the elements of A and b for a 3× 3 neighbourhood.
Two small composed images of 10× 10 pixels called composedIm_1.png

and composedIm_2.png are available on Campusnet. They are made
from an image by extracting two patches shifted by one pixel. Further-
more a 3× 3 region of the same pattern is placed in the image, but

http://findit.dtu.dk/

note for image analysis 57

shifted in the opposite direction as shown in Figure 5.1. You can use
these two images to try simple experiments with optical flow.

Task: Compute the optical flow vector for a window of 3× 3 pixels
centered at (r, c) = (2, 6) and (r, c) = (5, 4), where r is the row and c
is the column. You should use a simple pixel differences to compute
the differential by using the central difference filters [−1, 0, 1] and
[−1, 0, 1]T . You can also use [−1, 1] and [−1, 1]T , but then the derivative
is computed between pixels. You can ignore this and compare the result
to the central difference filter.

The least squares solution to Au = b is found by solving the mini-
mization problem

arg min
u
‖Au− b‖2. (5.4)

Taking the derivative with regards to u and setting to zero yields

u = (ATA)−1ATb. (5.5)

This allows us to precompute ATA and ATb as a number of sums over
the image that can be obtained efficiently by filtering.

Task: Write up the elements of ATA and ATb.

Task: Precompute the input needed for ATA and ATb and implement
a filtering scheme that sums the elements for the small test images
composedIm_1.png and composedIm_2.png. Compute the flow vectors
for the full images.

Task: Display the flow vectors on top of the images using the MATLABfunction
quiver.

5.2.2 Lucas-Kanade method

In this and the next part you should experiment with larger images.
There are some benchmark images available from the Middlebury
benchmark homepage http://vision.middlebury.edu/flow/. Some
images from here have been uploaded to CampusNet that you can use
for this exercise. But you are also welcome to experiment with your
own images.

What you implemented in part 1 is a simple version of the Lukas-
Kanade method. When you are working with larger images, there are
however some practical aspects to consider. The linear system Au = b
may be ill posed such that there are no vector u that fulfills the equation.
If this is the case, the 2× 2 matrix ATA does not have an inverse.

http://vision.middlebury.edu/flow/

58 anders bjorholm dahl vedrana andersen dahl

Task: Find a way to check if there is a solution to the equation Au = b,
i.e. that ATA has an inverse. Implement that in your solution for
computing the optical flow vector field.

Task: Compute and display the flow field in two larger images from
e.g. the Middlebury dataset.

In part 1 you implemented the image differential using pixel differ-
ences. There are also other methods for computing image differentials
like central differences using the filter [−1, 0, 1] and its transpose. You
may also use a differential of a Gaussian.

Task: Test one or more differential filters.
Instead of treating all pixels from a window around a point in the

image equally better results can be obtained by weighting the pixels
using a weight matrix WAu = Wb where W is a diagonal weight
matrix, resulting in the least squares solution u = (ATWA)−1ATWb.
This can efficiently be implemented using a weighted filter e.g. a
Gaussian.

Task: Implement a weighted sampling window as a filter operation.
Display the result on test images using different filter size.

Task: Comment on performance and processing time for the Lucas-
Kanade method.

5.2.3 Horn-Shunck method

A problem with the Lucas-Kanade method is that it operates locally, so
in regions with no texture it is not possible to compute the flow vectors.
This is solved in the Horn-Shunck method where the Laplacian over
the vector field is minimized in addition to ensuring that the brightness
is constant by minimizing

E =
∫ ∫

[(Ixu + Iyv + It) + α2(‖∇u‖2‖∇v‖2)]dxdy. (5.6)

The energy E is minimized by iteratively updating the flow vectors
using the update rules

uk+1 = ūk −
Ix(Ixūk + Iyv̄k + It)

α2 + I2
x + I2

y
(5.7)

vk+1 = v̄k −
Iy(Ixūk + Iyv̄k + It)

α2 + I2
x + I2

y
(5.8)

where ūk is the average flow over a window in the x-direction.

note for image analysis 59

Task: Implement the Horn-Shunck method and test it on two larger
images from e.g. the Middlebury dataset. Display the flow vectors.

The choice of the α parameter and the number of iterations influence
the smoothness of the obtained result. Also the choice of how the image
is differentiated will affect the performance.

Task: Display results with varying parameter choices. Display results
of a good and a bad choice of α. Do the same for number of iterations
and size of averaging.

Task: Experiment with different choice of differentiation method.

Task: Comment on performance and processing time for the Horn-
Shunck method.

5.3 Layered surfaces

A volumetric segmentation problem can often be constrained in terms
of topology. We may for example be interested in segmenting a roughly
spherical object, tubular objects or surfaces. Such topological con-
straints strongly reduce the solution space, and may turn an otherwise
challenging problem into a solvable problem, an example is shown in
Figure 5.2.

Figure 5.2: OCT (optical coherence to-
mography) image of retina. Quantifying
the thickness of retinal layers is of clinical
importance.

In this mini-project we focus on optimal net surface detection via
graph search originally suggested by Wu and Chen 9 for segment-

9 Xiaodong Wu and Danny Z Chen. Op-
timal net surface problems with applica-
tions. In Automata, Languages and Program-
ming, pages 1029–1042. Springer, 2002

ing terrain-like surfaces. They construct a graph on a set of sample
points from a volume, such that the roughness of possible solutions
is constrained. The optimality of the solution is defined in terms of
a volumetric cost function derived from the data. The approach has
been extended for finding multiple interrelated layered terrain-like
and tubular surfaces 10, which made it applicable for medical image

10 Kang Li, Xiaodong Wu, Danny Z Chen,
and Milan Sonka. Optimal surface seg-
mentation in volumetric images – a
graph-theoretic approach. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 28(1):119–134, 2006

segmentation and led to further extensions. One extension involves
the volumetric cost function which determines an optimal placement
of the surface. This was originally defined only in terms of on-surface
appearance, and has been extended to incorporate appearance of the
regions between surfaces 11.

11 Mona Haeker, Xiaodong Wu, Michael
Abràmoff, Randy Kardon, and Milan
Sonka. Incorporation of regional infor-
mation in optimal 3-d graph search with
application for intraretinal layer segmen-
tation of optical coherence tomography
images. In Information Processing in Medi-
cal Imaging, pages 607–618. Springer, 2007

We will here review an algorithm for finding optimal layered sur-
faces, with the focus on the inputs and the outputs. For details on how
this algorithm works, the reader is referred to article by Li et al. We also
very briefly cover the principle of transforming the data into volumetric
cost, which is the input to the layered surface detection algorithm.

60 anders bjorholm dahl vedrana andersen dahl

5.3.1 Layered surface detection

In a discrete volume x ∈ {1, . . . , X}, y ∈ {1, . . . , Y}, z ∈ {1, . . . , Z},
a terrain-like surface s defined by z = s(x, y) meets a smoothness
constraint (∆x, ∆u) if

|s(x, y)− s(x− 1, y)| ≤ ∆x and |s(x, y)− s(x, y− 1)| ≤ ∆y . (5.9)

For a cost volume c(x, y, z), an on-surface cost of s is defined as

Con(s, c) =
X

∑
x=1

Y

∑
y=1

c(x, y, s(x, y)) . (5.10)

The optimal net surface problem is concerned with finding a terrain-like
surface with a minimum cost among all surfaces satisfying smoothness
constraint.

The polynomial time solution presented in the work by Wu and
Chan transforms the optimal net surface problem into that of finding a
minimum-cost closed set in a node-weighted directed graph with nodes
representing volume voxels. This is further transformed into a problem
of finding a minimum-cost s-t cut in a related arc-weighted directed
graph. Minimum-cost s-t cut can be solved in polynomial time and
efficiently found using algorithm of Boykov and Kolmogorov 12, a well 12 Y Boykov and V Kolmogorov. An exper-

imental comparison of min-cut/max-flow
algorithms for energy minimization in vi-
sion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137,
2004

known tool for many image segmentation tasks. While the optimal net
surface problem is ultimately solved using the minimum-cost s-t cut
algorithm, it should be noted that the graph constructed for surface
detection is rather different than when used for Markov random fields.

The extension to multiple surfaces developed in 13 may be exempli- 13 Kang Li, Xiaodong Wu, Danny Z Chen,
and Milan Sonka. Optimal surface seg-
mentation in volumetric images – a
graph-theoretic approach. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 28(1):119–134, 2006

fied by considering two terrain-like surfaces s1 and s2. The surfaces are
said to meet an overlap constraint (δlow, δhigh) if

δlow ≤ |s2(x, y)− s1(x, y)| ≤ δhigh . (5.11)

Given two cost volumes c1 and c2 the total cost associated with surfaces
s1 and s2 is

Con(s1, c1) + Con(s2, c2)

and the optimal surface detection will return a pair of surfaces with a
minimum cost among all surfaces satisfying overlap and smoothness
constraint. Depending on the problem at hand c1 and c2 may be
different or identical, and likewise smoothness constrains may vary or
be the same for the two surfaces.

Finally, two layered (i.e. non-intersecting and ordered) surfaces give
rise to an in-region cost corresponding to the volume between two
surfaces, and defined by

Cin(s1, s2, c1,2) =
X

∑
x=1

Y

∑
y=1

s2(x,y)

∑
z=s1(x,y)+1

c1,2(x, y, z) . (5.12)

note for image analysis 61

This cost, together with the cost for the region under the surface s1 and
the region over the surface s2, can be incorporated into the minimization
problem 14. We use notation c0,1 and c2,3 for the cost volumes in 14 Mona Haeker, Xiaodong Wu, Michael

Abràmoff, Randy Kardon, and Milan
Sonka. Incorporation of regional infor-
mation in optimal 3-d graph search with
application for intraretinal layer segmen-
tation of optical coherence tomography
images. In Information Processing in Medi-
cal Imaging, pages 607–618. Springer, 2007

connection with the boundary regions.
To summarize, for finding K cost-optimal layered surfaces we need

to define
• K on-surface cost volumes ck, k = 1, . . . , K, and/or
• K+1 in-region cost volumes ck,k+1, k = 0, . . . , K.
The set of feasible surfaces is given by

• K smoothness constraints
(

∆k
x, ∆k

y

)
, k = 1, . . . , K and

• K−1 overlap constraints
(

δk,k+1
low , δk,k+1

hight

)
, k = 1, . . . , K−1.

Layered surface detection has found an immediate use for detecting
tubular surfaces. The main principle is the fact that a circle x2 + y2 =

ρ2 appears as a straight line r = ρ when represented in polar (r, θ)

coordinates. Detecting a tubular surface is achieved by representing
the volumetric data in a cylindrical coordinate system (r, θ, z) with the
longitudinal axis r = 0 roughly aligned with the center of the tube.
We call this transformation unwrapping the volume, and we also say
that the volume is sampled along the radial rays. Important practical
parameters for unwrapping are the radial and the angular resolution.
In the unwrapped representation, the tubular surface is terrain-like and
can be defined as r = s(θ, z). When using layered surface detection
for detection of tubular surfaces, additional constraints are added to
ensure a smooth transition over θ = 0.

5.3.2 Constructing cost volumes

The surfaces returned by the layered surface detection algorithm are
optimal in terms of the volumetric cost. Therefore, to detect a surface
we need to define a cost volume ck which takes small values where a
data V(x, y, z) supports the surface k. This modelling step, crucial for
the performance of the algorithm, is fully dependent on the data.

If the surface to be detected is characterized by a certain voxel
intensity vs, then the cost volume may be defined as (V − vs)2. More
often, the surface divides two regions of different intensities, so cost
volume needs to be defined in terms of change of intensity. When
computing intensity changes for tubular surfaces, the best approach
is to first unwrap the volume, and then compute the change in the r
direction.

5.3.3 Examples

Figure 5.3 demonstrates the use of the layered surface detection.

62 anders bjorholm dahl vedrana andersen dahl

A 400×140 pixels
image

Thresholding (for
comparison)

No smoothness
constraint

∆x=50 ∆x=2 ∆x=1
∆1

x=2, ∆2
x=2,

δ1,2
low=5

∆1
x=1, ∆2

x=2,
δ1,2

low=5
∆1

x=2, ∆2
x=2,

δ1,2
low=15

∆1
x=2, ∆2

x=2,
δ1,2

low=30, δ1,2
high=40

Surface on bright
pixels

On-dark and
on-bright, δ1,2

high=60
Four on-dark

surfaces
Eight surfaces, nine

region costs

Figure 5.3: Output of layered surface de-
tection. First three images serve to il-
lustrate the problem). Images 4–6 show
how changing smoothness constraint in-
fluences the result. Images 7–10 demon-
strate the use of the overlap constraint.
Images 11–12 demonstrate the use of dif-
ferent cost functions. Image 13 is a four-
surface detection, while image 14 uses
region costs.

note for image analysis 63

5.3.4 Proposed mini-projects for layered surface detection

You may work with the layered surface detection in a number of ways.
Contact the teacher to clarify the possibilities.

1. Use the provided algorithm for layered surface detection – only
MATLAB users. [Effort: easy to difficult.]

2. Implement the algorithm for layered surface detection. For finding
minimal s-t cut use the same implementation as previously used for
Markov random fields exercise. [Effort: medium.]

3. Adapt the layered surface detection algorithm so that it operates on
the triangular mesh. [Effort: difficult.]

5.4 Spectral Clustering and Normalized Cuts

Spectral clustering is an approach to data clustering problem, and it
includes a number of related techniques. Spectral clustering is used
in machine learning, computer vision and signal processing, with
applications in processing speech spectrograms, DNA gene expression
analysis, document retrieval and computation of Google page rank.
The name spectral originates from the mathematical term spectrum (a
set of the egenvalues of a given matrix), and this is because spectral
clustering utilizes eigenvalues and eigenvectors of the data similarity
matrix.

Spectral clustering is one of the fundamental data clustering ap-
proaches, it is easy to implement and solve by standard linear algebra
software, there is no assumptions on the nature of the clusters, and the
techniques have been mathematically rigorously proved. Disadvantages
include high computational and memory requirements of the direct
implementation. For this reason the practical use of spectral clustering
often involves computational simplifications and significant pre- or
postprecessing.

Spectral approach has gained a great popularity for image segmenta-
tion following the seminal paper on normalized cuts by Shi and Malik
15. Recent uses of spectral approach is in the superpixel segmentation. 15 Jianbo Shi and Jitendra Malik. Normal-

ized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(8):888–905, 2000

Another intriguing example is the Copenhagen-based company Spek-
tral (formerly known as CloudCutout) where spectral segmentation is
a part of the successful green-screen removal product Figure 5.4.

Figure 5.4: Spektral (formerly known as
CloudCutout) green-screen product.

Spectral methods can be applied to the data which is represented
using a similarity matrix, and is often described in terms of graph parti-
tioning. For a comprehensible coverage of (general) spectral clustering
we recommend an excellent tutorial by von Luxburg 16. We will here

16 Ulrike Von Luxburg. A tutorial on spec-
tral clustering. Statistics and computing, 17

(4):395–416, 2007

briefly cover spectral clustering, and will then turn to its use in image
segmentation.

64 anders bjorholm dahl vedrana andersen dahl

Boiled down to four words, the essence of spectral clustering is:
Eigensolution gives graph partitioning. To be able to understand spectral
clustering, you need to be acquainted with the concept of graph cuts
in order to describe the problem we want to solve. Furthermore, we
need to represent a graph using an adjacency matrix and a closely
related Laplacian matrix. Then we can see how eigensolution provides
a solution to a graph cut problem.

1

2

3 4

5

6

7

8

9 10

11

12

20
20

20

20
20

20

10
10

10

10
10

10

8

57

5

Figure 5.5: An example of an edge-
weighted undirected graph.

1 2 3 4 5 6 7 . . .
1 0 20 20 8 0 0 7 . . .
2 20 0 20 0 0 0 0 . . .
3 20 20 0 0 0 0 0 . . .
4 8 0 0 0 20 20 0 . . .
...

...
...

...
...

...
...

...
. . .

Figure 5.6: An adjacency matrix of a
graph shown in Figure 5.5.

1

2

3 4

5

6

7

8

9 10

11

12

20
20

20

20
20

20

10
10

10

10
10

10

8

57

5

(1)

(2)

(3)

Figure 5.7: Three different partitioning of
a graph.

(1) (2) (3)

cut 10 12 13

Rcut 4.4̇ 4.0 4.3̇

Ncut 0.1723 0.1293 0.1268

MMcut 0.3939 0.2784 0.2709

Figure 5.8: Values of the different cuts
shown in Figure 5.7.

5.4.1 Graph cuts, graph representations and eigensolutions

Recall that a graph consists of nodes and edges, and in general may
be node-weighted, edge-weighed, directed or undirected. In context
of spectral image segmentation, each pixel will correspond to a graph
node, and pairs of pixels define graph edges – we will get back to image
segmentation after covering the general case. For spectral clustering
we work with edge-weighted undirected graphs which we represent
using an adjacency matrix W with elements wij being the weight of the
edge connecting the node i and a node j. Consider for example a graph
in Figure 5.5 consisting of 12 nodes. This graph can be represented in
terms of a 12× 12 adjacency matrix, as illustrated in Figure 5.6.

A graph cut is a partitioning of a graph. The graph partitioning
problems are concerned with finding a graph cut with the least cost.
The simplest way of defining the cost of a cut is to consider all edges
between the two partitions

cut(A, B) = ∑
i∈A,j∈B

wij ,

but that might lead to unbalanced cuts. For this reason we might prefer
using some other measure of the cut cost, which also consider the size
of the partitions. Commonly used are normalized cuts

Rcut(A, B) =
cut(A, B)
|A| +

cut(A, B)
|B| ,

where we use the notation |A| for a number of vertices in subset A, but
one could also consider ratio cut and min-max cuts

Ncut(A, B) =
cut(A, B)

vol(A)
+

cut(A, B)
vol(B)

,

MMcut(A, B) =
cut(A, B)
cut(A, A)

+
cut(A, B)
cut(B, B)

,

where vol(A) is weight of all edges associated with the subset, i.e.
vol(A) = ∑i∈A di and di = ∑j wij is a degree of ith node. Figure 5.7
shows three graph cuts, while Figure 5.8 lists the costs associated with
the three cuts given by different measures. You may confirm that the

note for image analysis 65

values are correct, and notice the different balancing properties of the
cost measures.

It turns out that the solution to the graph cut problem may be
found by considering the eigensolution of the matrix closely related
to the adjacency matrix – the graph Laplacian. Depending on the cost
measure, the derivation will be slightly different, leading to the different
(unnormalized and normalized) versions of the graph Laplacians. To
normalize the Laplacian, we first define a diagonal degree matrix D
with diagonal elements being node degrees di = ∑j wij.

We define unnormalized graph Laplacian

L = D−W ,

and two normalized graph Laplacians

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2 ,

Lrw = D−1L = I−D−1W .

These matrices are closely related to each other, and so are their
spectra. All three matrices have real-valued eigenvalues with 0 being the
smallest eigenvalue, see tutorial by von Luxburg for a more complete
list of properties. For our purposes, the most important are eigenvectors
of Lrw, i.e. vectors satisfying Lrwu = λu. The smallest eigenvectors
(i.e. corresponding to smallest eigenvalues) yield solution to finding
the normalized cut. The eigenvectors provide the representation of
the date which enhances the cluster-properties, so that clusters can be
trivially detected for example using k-means clustering. In particular,
the second smallest eigenvector gives the partitioning of the data in two
subsets – the very smallest eigenvector (corresponding to 0) is constant.

It can be shown that eigenvectors of Lrw are generalized eigenvectors
of L and D, see againg von Luxburgs tutorial, Proposition (3) part
3. Therefore, to fint the solution to normalized cut, one may also
seek solution to generalized eigenproblem Lu = λDu. This is the
formulation of normalized spectral clustering according to the original
paper by Shi and Malik. In practice, solving a standard eigenproblem
requires less computation.

We can utilize other matrix algebra identities to make computation
of the spectra more accurate and/or efficient. Many eigensolvers are
more accurate when working of symmetric matrices. A strategy ex-
ploiting matrix symmetry would involve computing eigenvectors of
the (symmetric) Lsym, and transforming those to eigenvectors of Lrw

by multiplying with D−1/2, see tutorial by von Luxburg, Proposition
(3) part 2. Furthermore, if only a subset of eigenvectors is to be found,
some eigensolvers are more efficient when finding eigenvectors corre-
sponding to largest eigenvalues. This may be utilized by noticing that
that smallest eigenvectors of I−A are largest eigenvectors of A.

66 anders bjorholm dahl vedrana andersen dahl

5.4.2 Clustering 2D points

You should implement two functions. One function should take and
affinity matrix and return eigenvectors corresponding to solution for
normalized cuts. The second function should perform discretization of
the eigenvectors using k-means.

You should first test your implementation on a small 2D point set.
You can use points previously used for neural networks, but we also
provide five point sets in a mat file points_data.mat. For each of the
point sets you should:

• Visualize the point set, and identify the clusters (there are 2 clusters
in set 3 and 5, and 3 clusters in set 1, 2 and 4).

• Construct the affinity matrix W. Use the fully connected graph and
Gaussian similarity function (Luxburg, Section 2.2). You should
initially estimate parameter σ so that it reflects the distance between
the neighbouring points of the point cloud.

• Compute eigenvectors and clustering given by the normalized cut.
Visualize the clustering.

• Determine ordering (permutation) of the points according to the
clustering (so that points from the first cluster come first, followed
by points in the second cluster, etc.)

• Visualize the values of the second eigenvector, first for unsorted
points, then for sorted points.

• Visualize affinity matrix, and the affinity matrix for sorted points.

• Estimate the parameter σ which results in a meaningful clustering.
You will need to change the parameter σ between point sets.

5.4.3 Image segmentation

Now we use spectral clustering on a pixels of a small image. Consider
some of the provided test images. You might want to (drasticaly!)
reduce the size of your images, to avoid memory problems.

You should:

• Construct the affinity matrix W using Equation (11) from article by
Shi and Malik. Initially estimate parameters σI , σX and r. Instead
of setting a radius r, for our small example you may use a fully
connected graph (i.e. ignore if–otherwise condition of Equation (11)
which sets affinity of distant points to 0).

• Visualize the spatial part of W, the brightness part of W and the final
W.

note for image analysis 67

• Compute eigenvectors and clustering given by the normalized cut.

• Visualize the values of the second eigenvector on the image grid.

• Visualize the segmentation results.

• Estimate the model parameters to obtain meaningful segmentation.

Start by the grayscale image. Use 2 clusters for plane and 5 clusters
for vegetables. For the similarity (brightness, color) part of W treat an
RGB value of each pixel as a vector to compute the Euclidian distance
between the pair of pixels. Try also clustering the pixels using k-means
clustering by treating RGB pixels values as vectors.

Consider adapting spectral methods to be able to handle larger
images.

6 Bibliography

CM Bishop. Pattern recognition and machine learning (information
science and statistics), chapter 3, pages 138–147, 2006.

Y Boykov and V Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137,
2004.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(11):1222–1239, 2001.

Tony F Chan and Luminita A Vese. Active contours without edges.
IEEE Transactions on image processing, 10(2):266–277, 2001.

M. Crosier and L.D. Griffin. Using basic image features for texture
classification. International Journal of Computer Vision, 88(3):447–460,
2010. ISSN 0920-5691. doi: 10.1007/s11263-009-0315-0.

A.A. Efros and T.K. Leung. Texture synthesis by non-parametric
sampling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 2, pages 1033–1038 vol.2, 1999.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

Mona Haeker, Xiaodong Wu, Michael Abràmoff, Randy Kardon, and
Milan Sonka. Incorporation of regional information in optimal 3-d
graph search with application for intraretinal layer segmentation of
optical coherence tomography images. In Information Processing in
Medical Imaging, pages 607–618. Springer, 2007.

Berthold KP Horn and Brian G Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes:
Active contour models. International Journal of Computer Vision, 1(4):
321–331, 1988.

70 anders bjorholm dahl vedrana andersen dahl

V Kolmogorov and R Zabih. What energy functions can be minimized
via graph cuts? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):147–159, 2004.

Kang Li, Xiaodong Wu, Danny Z Chen, and Milan Sonka. Optimal
surface segmentation in volumetric images – a graph-theoretic ap-
proach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(1):119–134, 2006.

Stan Z Li. Markov random field modeling in image analysis. Springer
Science & Business Media, 2009.

Tony Lindeberg. Scale-space: A framework for handling image struc-
tures at multiple scales. 1996.

David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

B D Lucas and T Kanade. An iterative image registration technique
with an application to stereo vision. 1981.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22

(8):888–905, 2000.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

Lindsay I Smith. A tutorial on principal components analysis. Techni-
cal report, 2002.

Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

Xiaodong Wu and Danny Z Chen. Optimal net surface problems
with applications. In Automata, Languages and Programming, pages
1029–1042. Springer, 2002.

Chenyang Xu, Dzung L Pham, and Jerry L Prince. Image segmentation
using deformable models. Handbook of medical imaging, 2:129–174,
2000a.

Chenyang Xu, Anthony Yezzi Jr, and Jerry L Prince. On the rela-
tionship between parametric and geometric active contours. In The
Asilomar Conference on Signals, Systems,and Computers, volume 1, pages
483–489. IEEE, 2000b.

	Image representations
	Exercise 1

	Feature-based image analysis
	Scale-space
	Exercise 2 – part I
	Exercise 2 – part II
	Exercise 2 – part III

	Image analysis with geometric priors
	Markov random fields
	Deformable models
	Assignment on geometric priors

	Neural networks
	Feed forward neural network
	Backpropagation
	Implementation
	MNIST classification
	Convolutional neural networks

	Free exercise
	Texture Analysis
	Optical flow
	Layered surfaces
	Spectral Clustering and Normalized Cuts

	Bibliography

